| Q1. |                                                             | Aqueous metal ions can be identified by test-tube reactions.                                                               |    |  |
|-----|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----|--|
|     | For each of the following, describe what you would observe. |                                                                                                                            |    |  |
|     | Wri                                                         | te an equation or equations for any reactions that occur.                                                                  |    |  |
|     | (a)                                                         | The addition of aqueous sodium carbonate to a solution containing $[Fe(H_2O)_6]^{3*}(aq)$ ions.                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            | (4 |  |
|     |                                                             |                                                                                                                            |    |  |
|     | (b)                                                         | The addition of aqueous sodium hydroxide, dropwise until in excess, to a solution containing $[Al(H_2O)_6]^{3*}(aq)$ ions. |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            | (4 |  |
|     |                                                             |                                                                                                                            | •  |  |
|     | (c)                                                         | The addition of dilute aqueous ammonia, dropwise until in excess, to a solution containing $[Cu(H_2O)_6]^{2*}(aq)$ ions.   |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |
|     |                                                             |                                                                                                                            |    |  |

|     |                                                                                                                                   | (4)             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     |                                                                                                                                   |                 |
| (d) | The addition of concentrated hydrochloric acid, dropwise until in excess, to a solution containing $[Cu(H_2O)_6]^{2^*}(aq)$ ions. |                 |
|     |                                                                                                                                   |                 |
|     |                                                                                                                                   |                 |
|     |                                                                                                                                   |                 |
|     | (Total 14                                                                                                                         | (2)<br>4 marks) |

**Q2.**Which one of the following reactions in aqueous solution has the most positive change in entropy?

**A** 
$$[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$$

**B** 
$$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$$

$$\textbf{C} \qquad [Cu(H_2O)_6]^{2^+} + EDTA^{4^-} \rightarrow [Cu(EDTA)]^{2^-} + 6H_2O$$

$$\begin{array}{ll} \textbf{D} & [Cu(H_2O)_6]^{2^+} + 2H_2NCH_2CH_2NH_2 \rightarrow [Cu(H_2NCH_2CH_2NH_2)_2(H_2O)_2]^{2^+} + 4H_2O \\ & & \textbf{(Total 1 mark)} \end{array}$$

**Q3.** Hydrogen peroxide is used as an oxidising agent in the preparation of transition metal complexes.

(a) Consider the following reaction scheme. All the complexes are in aqueous solution.

$$[Co(H_2O)_6]^{2^+} \xrightarrow{\begin{array}{c} \text{Reaction 1} \\ \text{ cobalt(II) complex} \end{array}} \begin{array}{c} \text{Reaction 2} \\ \hline H_2O_2 \end{array}$$

(i) Identify a reagent for Reaction 1 and describe the colour change that occurs.

.....

|                    |                                             |                                                                                                                   | (3)   |
|--------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|
|                    |                                             |                                                                                                                   | (0)   |
|                    |                                             |                                                                                                                   |       |
|                    | (ii)                                        | State the colour of the final solution formed in Reaction 2.                                                      |       |
|                    |                                             |                                                                                                                   | (1)   |
|                    |                                             |                                                                                                                   |       |
| (b)                | Cons                                        | ider the following reaction scheme. All the complexes are in aqueous solution.                                    |       |
|                    |                                             | Reaction 3 Reaction 4                                                                                             |       |
| [Cr(H <sub>2</sub> | <sub>2</sub> O) <sub>6</sub> ] <sup>3</sup> | + ————— chromium(III) complex ————— CrO <sub>4</sub> <sup>2−</sup> Excess NaOH(aq) H <sub>2</sub> O <sub>2</sub>  |       |
|                    | /:\                                         |                                                                                                                   |       |
|                    | (i)                                         | For Reaction 3, state the colour of the initial and of the final solution and write an equation for the reaction. |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   | (4)   |
|                    |                                             |                                                                                                                   | ( - / |
|                    |                                             |                                                                                                                   |       |
|                    | (ii)                                        | Write a half-equation for the reduction of hydrogen peroxide to hydroxide ions.                                   |       |
|                    |                                             | Deduce an overall equation for Reaction <b>4</b> and state the colour of the final solution.                      |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   |       |
|                    |                                             |                                                                                                                   | (4)   |

|                  | with acidified potassium manganate(VII) solution. In this reaction the hydroperoxide is oxidised to oxygen gas.                                                                                                                                                                                                                                                                                                                                                         | ogen                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                  | A 5.00 cm <sup>3</sup> sample of the hydrogen peroxide solution was added to a volun flask and made up to 250 cm <sup>3</sup> of aqueous solution. A 25.0 cm <sup>3</sup> sample of the solution was acidified and reacted completely with 24.35 cm <sup>3</sup> of 0.0187 more potassium manganate(VII) solution.                                                                                                                                                      | nis diluted             |
|                  | Write an equation for the reaction between acidified potassium manganate solution and hydrogen peroxide.  Use this equation and the results given to calculate a value for the concent mol dm <sup>-3</sup> , of the original hydrogen peroxide solution.  (If you have been unable to write an equation for this reaction you may assoluted a mol of KMnO <sub>4</sub> react with 7mol of H <sub>2</sub> O <sub>2</sub> . This is <b>not</b> the correct reacting rate | tration, in             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (5)                     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (5)<br>(Total 17 marks) |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| <b>Q4.</b> Ethan | edioic acid is an important industrial chemical with a number of uses.                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| Eth              | anedioate ions, C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> , act as bidentate ligands with transition metal ions.                                                                                                                                                                                                                                                                                                                                                      |                         |
| (a)              | Write an equation for the ligand substitution reaction of an excess of ethar ions with aqueous cobalt(II) ions.                                                                                                                                                                                                                                                                                                                                                         | nedioate                |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1)                     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |

The concentration of a hydrogen peroxide solution can be determined by titration

(c)

(b) The table below shows some standard electrode potentials.

|                                        |                              | E⊕ /V |
|----------------------------------------|------------------------------|-------|
| Fe³⁺(aq) + e⁻                          | → Fe²⁺(aq)                   | +0.77 |
| 2CO <sub>2</sub> (g) + 2e <sup>-</sup> | $\rightarrow C_2O_4^2$ -(aq) | -0.49 |

Use *E*⊕ values from the table to explain why an iron(III) complex is **not** formed when solutions containing ethanedioate ions and iron(III) ions are mixed.

.....

(Total 3 marks)

Q5. The scheme below shows some reactions of copper(II) ions in aqueous solution. W, X, Y and Z are all copper-containing species.



(a) Identify ion  $\mathbf{W}$ . Describe its appearance and write an equation for its formation from  $[Cu(H_2O)_6]^{2*}(aq)$  ions.

lon **W**.....

|     | App                                                                                                       | earance                                                                                                                   |    |  |
|-----|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----|--|
|     | Equ                                                                                                       | ation                                                                                                                     | (3 |  |
|     |                                                                                                           |                                                                                                                           | (3 |  |
|     |                                                                                                           |                                                                                                                           |    |  |
| (b) |                                                                                                           | ntify compound <b>X</b> . Describe its appearance and write an equation for its nation from $[Cu(H_2O)_6]^{2*}(aq)$ ions. |    |  |
|     | Con                                                                                                       | pound <b>X</b>                                                                                                            |    |  |
|     | App                                                                                                       | earance                                                                                                                   |    |  |
|     | Equ                                                                                                       | ation                                                                                                                     | (3 |  |
|     |                                                                                                           |                                                                                                                           |    |  |
| (c) | Ider<br><b>X</b> .                                                                                        | ntify ion <b>Y</b> . Describe its appearance and write an equation for its formation from                                 |    |  |
|     | lon `                                                                                                     | Υ                                                                                                                         |    |  |
|     | App                                                                                                       | earance                                                                                                                   |    |  |
|     | Equ                                                                                                       | ation                                                                                                                     | (2 |  |
|     |                                                                                                           |                                                                                                                           | (3 |  |
| (d) |                                                                                                           | ntify compound <b>Z</b> . Describe its appearance and write an equation for its nation from [Cu(H₂O)₅]²·(aq) ions.        |    |  |
|     |                                                                                                           | - , , , - , , ,                                                                                                           |    |  |
|     | Compound <b>Z</b>                                                                                         |                                                                                                                           |    |  |
|     |                                                                                                           | Appearance  Equation                                                                                                      |    |  |
|     | ĽЧu                                                                                                       | auon                                                                                                                      | (3 |  |
|     |                                                                                                           |                                                                                                                           |    |  |
| (e) | Copper metal can be extracted from a dilute aqueous solution containing copper(II) ions using scrap iron. |                                                                                                                           |    |  |
|     | (i)                                                                                                       | Write an equation for this reaction and give the colours of the initial and final aqueous solutions.                      |    |  |
|     |                                                                                                           | Equation                                                                                                                  |    |  |
|     |                                                                                                           | Initial colour                                                                                                            |    |  |
|     |                                                                                                           | Final colour                                                                                                              |    |  |

| (ii) | This method of copper extraction uses scrap iron. Give <b>two</b> other reasons why this method of copper extraction is more environmentally friendly than reduction of copper oxide by carbon. |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Reason 1                                                                                                                                                                                        |
|      | Reason 2(2)                                                                                                                                                                                     |
|      | (Total 17 marks)                                                                                                                                                                                |