Q1. This question is about some reactions of cobalt compounds.

(a) Give the formula of the complex responsible for the pink colour in aqueous CoCl₂ and name its shape.

Formula	a	
i Ullilula	a	

Name of shape

(2)

(2)

(b) Give the formula of the cobalt-containing compound ${\bf V}$ and describe its appearance.

Formula

Appearance

(c) Write an equation for the reaction that occurs when the pink solution is converted into **W**.

(2)

(d) Give the formula of the cobalt-containing complex in \boldsymbol{X} and state the role of the H_2O_2 in this reaction.

	Formula	
	Role of H ₂ O ₂	40
		(2
(e)	Give the formula of the cobalt-containing complex in ${\bf Y}$ and explain why this complex is more stable than the cobalt-containing complex in ${\bf W}$.	
	Formula	
	Explanation	
		(3
		(3
(f)	Identify the cobalt-containing complex in solution Z and explain why its co-ordination number is different from that in the pink solution of CoCl ₂	
	Complex	
	Explanation	
	(1	2) Total 13 marks
	(a) State the electron configuration of a Ti(III) ion and that of a Ti(IV) ion. Expression in terms of electron configurations and electron transitions, why Ti(III) composer are usually coloured but Ti(IV) compounds are colourless.	

Q2.

			(5)
(b)	For e	esition metal ions and their complexes can often be identified from their colours. each of the following, identify a complex ion responsible for the colour of the cous solution. Restrict your answers to complexes formed from the elements Cr, Co and Cu.	
	A de	ep blue solution formed in an excess of concentrated aqueous ammonia.	
	A gre	een solution formed in an excess of aqueous sodium hydroxide.	
	A ye	llow–green solution formed in an excess of concentrated hydrochloric acid.	
			(3)
			(0)
(c)	dilute react reco	experiment is carried out to investigate the rate of the autocatalysed reaction een aqueous potassium manganate(VII) and ethanedioate ions in an excess of e sulfuric acid. When these reagents are mixed together, the colour of the cion mixture gradually fades. The concentration of the manganate(VII) ions is reded at different times using a spectrometer. The temperature of the reaction are is constant.	
	(i)	Give two reasons why the use of a spectrometer is the most appropriate method for measuring the concentration of the coloured ions in this experiment.	

(ii)	Sketch a curve to show how you would expect the concentration of manganate(VII) ions to change with time until the colour has faded be the concentration has reached a very low value. Explain the shape curve.	ecause f the
		(5) (Total 15 marks)

Q3. (a) Octahedral and tetrahedral complex ions are produced by the reaction of transition metal ions with ligands which form co-ordinate bonds with the transition metal ion.

Define the term *ligand* and explain what is meant by the term *co-ordinate bond*.

(3)

	(b)	(i)	Some complex ions can undergo a ligand substitution reaction in which both the co-ordination number of the metal and the colour change in the reaction. Write an equation for one such reaction and state the colours of the complex ions involved.	
		(ii)	Bidentate ligands replace unidentate ligands in a metal complex by a ligand substitution reaction. Write an equation for such a reaction and explain why this reaction occurs.	(8)
	(c)		frequency, v , of light absorbed by a transition metal complex ion can be	
		and	rmined using the relationship $\Delta E = hv$. State what is meant by the symbols ΔE h . Give three factors which result in a change in the frequency of light orbed as a result of the reaction of a complex ion. (Total 16 m	(5) narks
			(Total To III	ar no,
Q4.			haracteristic properties of transition metals include complex formation and the of coloured ions.	
	(a)		ne complex ions can undergo a ligand substitution reaction in which both the dination number of the metal and the colour of complex ions change in the tion.	
		invol		
		Equa	ation	
		Colo	ours of complex ions	(4)
				(4)
	(b)		frequency, v , of light absorbed by a transition–metal complex ion can be rmined using the relationship $\Delta E = hv$.	
		(i)	State what is meant by the symbols ΔE and h . Meaning of symbol ΔE	
			D 0	

(ii)	Give three factors which may cause the frequency of light absorbed to change when a complex ion reacts.
	Factor 1
	Factor 2
	Factor 3 (5)
	(Total 9 marks)

Meaning of symbol h