Q1.(a) The concentration of iron(III) ions in a dilute solution can be determined by visible spectrometry. The absorption of light by a number of solutions of iron(III) sulfate, $Fe_2(SO_4)_3(aq)$, was measured. The results are shown in the table below. | Concentration of Fe₂(SO₄)₃(aq) / mol dm⁻³ | Absorbance / % | |---|----------------| | 0.020 | 2.2 | | 0.040 | 4.7 | | 0.060 | 7.0 | | 0.080 | 9.4 | | 0.100 | 11.8 | (i) Use these results to plot a graph of percentage absorbance (*y*-axis) against concentration of iron(III) sulfate solution on the grid below. Draw a straight line of best fit. | | | | | | |---|---|--|---|---| +++++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | | | | | | | | +++++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | | | | | +++++++++++++++++++++++++++++++++++++++ | | / | +++++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | | | | | +++++++++++++++++++++++++++++++++++++++ | | | +++++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | | | | | +++++++++++++++++++++++++++++++++++++++ | | | +++++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | | | | | | | | +++++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | +++++++++++++++++++++++++++++++++++++++ | | | +++++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | | | | | +++++++++++++++++++++++++++++++++++++++ | | | +++++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | | | | | | | | +++++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | | | | | | | | +++++++++++++++++++++++++++++++++++++++ | | Use your graph to determine the concentration of iron(III) ions in a solution of Fe₂(SO₄)₃ that has an absorbance of 5.4%. | (i | , | Calculate the volume of water that should be added to 100 cm³ of a 0.10 mol dm³ solution of iron(III) sulfate to make a 0.040 mol dm³ solution. Show your working. | |---|--------|---| | | | | | | | | | | | | | | | (2) | | | | | | (b) (| Give | one reason why well-water may be more beneficial to health than pure water. | | | | | | | | | | | | (1)
(Total 7 marks) | | | | | | | | | | ethane
ions in | dioat | colution of potassium manganate(VII) was reacted with a sample of sodium te at a constant temperature of 60 °C. The concentration of the manganate(VII) reaction mixture was determined at different times using a spectrometer to be light absorbed. | | The following | g res | sults were obtained. | | Concentration | on | | | of MnO ₄ ⁻
/mol dm ⁻³ | | | | | | Time/s | | | | an equation for the reaction between manganate(VII) ions and ethanedioate | | ic | ons ii | n acidic solution. | | | (Extra space) | | |-----|---|-----| | | | (2) | | (b) | By considering the properties of the reactants and products, state why it is possible to use a spectrometer to measure the concentration of the manganate(VII) ions in this reaction mixture. | | | | | | | | | | | | | | | | | (2) | | (c) | This reaction is autocatalysed. Give the meaning of the term <i>autocatalyst</i> . Explain how the above curve indicates clearly that the reaction is autocatalysed. | | | | Meaning of autocatalyst | | | | Explanation | | | | | | | | | | | | | (3) | | (d) | Identify the autocatalyst in this reaction. | | | | | (1) | | (e) | Write two equations to show how the autocatalyst is involved in this reaction. | | | | Founties 4 | | | | Equation 1 | | | | Equ | ation 2 | | |-------------------|---------|--|------------| | | | (Total 10 m | 2)
arks | Q3. This o | questio | on is about copper chemistry. | | | (a) | Αqι | ueous copper(II) ions [Cu(H₂O)₆]²⁻(aq) are blue. | | | | (i) | With reference to electrons, explain why aqueous copper(II) ions are blue. | (Extra space) | | | | | | | | | | | | | | | | (3 | | | | | | | | (ii) | By reference to aqueous copper(II) ions, state the meaning of each of the three terms in the equation $\Delta E = hv$. | Write an equation for the reaction, in aqueous solution, between $[Cu(H_2O)_6]^{2^+}$ and an excess of chloride ions. State the shape of the complex produced and explain why the shape differs from that of the $[Cu(H_2O)_6]^{2^+}$ ion. | (| |------|--|---| | | Write an equation for the reaction, in aqueous solution, between $[Cu(H_2O)_6]^{2^+}$ and an excess of chloride ions. State the shape of the complex produced and explain why the shape differs from that of the $[Cu(H_2O)_6]^{2^+}$ ion. | (| | | and an excess of chloride ions. State the shape of the complex produced and explain why the shape differs from that of the $[Cu(H_2O)_6]^{2+}$ ion. | | | | | | | | | | | | | | | • | | | | | | | | • | | | | • | | | | | (Extra space) | | | - | | | | - | | , | | | | (| | | | | |)raw | the structure of the ethanedioate ion (C ₂ O ₄ ²⁻). | | | | n how this ion is able to act as a ligand. | (b) | (c) | conta | en a dilute aqueous solution containing ethanedioate ions is added to a solution aining aqueous copper(II) ions, a substitution reaction occurs. In this reaction water molecules are replaced and a new complex is formed. | | |-----|-------|--|--------------| | | (i) | Write an ionic equation for the reaction. Give the co-ordination number of the complex formed and name its shape. | (4) | | | (ii) | In the complex formed, the two water molecules are opposite each other. Draw a diagram to show how the ethanedioate ions are bonded to a copper ion and give a value for one of the O–Cu–O bond angles. You are not required to show the water molecules. | | | | | (Total 17 m | (2)
arks) | **Q4.**The concentration of iron(III) ions in a dilute solution can be determined by visible spectrometry. The absorption of light of a particular frequency by solutions of iron(III) sulfate of different concentrations was measured. The results are shown in the table ## below. | Percentage absorbance | Concentration of iron(III) sulfate / mol dm ⁻³ | |-----------------------|---| | 1.0 | 7.5 ×10 ^{-₃} | | 2.5 | 14.0 ×10⁻³ | | 5.0 | 27.5 ×10 ⁻ ³ | | 7.0 | 37.5 ×10 ^{-₃} | | 10.0 | 54.0 ×10 ⁻ ³ | | 12.0 | 65.0 ×10 ^{-₃} | (a) Use these results to plot a graph of percentage absorbance (y-axis) against concentration of iron(III) sulfate on the grid below. Draw a straight line of best fit. (b) Use your graph to determine the concentration of an iron(III) sulfate solution that has a percentage absorbance of 14.0%. (1) (Total 3 marks)