Mark schemes

Q1.				
(;	a)	2 Na(s) + 2 H ₂ O(l) \rightarrow 2 NaOH(aq) + H ₂ (g) Allow ionic equations		
		Allow multiples	1	
		Temperature will go up more or reactants can shoot out of the tube Allow the mixture could explode or glass could shatter or hydrogen could ignite/is flammable Ignore reaction is exothermic/vigorous	1	
(b)	$P_4O_{10} + 6 H_2O \to 4 H_3PO_4$	1	
	-	Allow ionic equations	1	
		Allow –1 to + 1		
		Do not allow equations from P_2O_5	1	
(c)	M1 SiO ₂ is macromolecular / giant covalent / giant molecule Do not allow giant, giant atomic or giant ionic	1	
		M2 Strong <u>covalent</u> bonds (between atoms) or <u>covalent</u> bonds need a lot of energy to be broken/overcome	1	
		M3 P ₄ O ₁₀ is molecular or simple covalent molecule	1	
		M4 Weak van der Waals forces <u>between molecules</u> or van der Waals forces <u>between molecules</u> break easily		
			1	
(d)	Al ₂ O ₃	1	
		$\begin{array}{l} Al_2O_3 + 3 \ H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3 \ H_2O \\ or \ Al_2O_3 + 6 \ H^+ \rightarrow 2 \ Al \ ^{3+} + 3 \ H_2O \end{array}$	1	
(e)	Mg(OH) ₂	1	
(1	f)	Na / sodium	1	[12]

Q2.

(a)	Cross at ?	1580		
		Allow a cross drawn for Si that is between the values for Mg and Al		
		Ű	1	
(b)	M1 Na		1	
	M2 Na ⁺	⁺(g) → Na²+(g) + e⁻	-	
		$M2 \text{ Allow } Q^+(g) \rightarrow Q^{2+}(g) + e^-$		
		State symbols essential		
		Allow correct equation consequential on their		
		element	1	
			1	
(c)	The numb	per of protons increases OR nuclear charge increases	1	
	Shielding	is similar/same OR electrons are added to the same shell		
	Oniciding	Allow same number of shells		
			1	
(d)	Chlorine/0	CI		
(u)			1	
(e)	4P + 50°	\rightarrow P ₄ O ₁₀ OR P ₄ + 5O ₂ \rightarrow P ₄ O ₁₀		
(0)	11 1 002	Allow multiples		
		Ignore state symbols		
		Do not allow equations with P_2O_5		
			1	
				[7]
Q3.				
(a)	4Na + O ₂	$\rightarrow 2Na_2O$		
		Ignore state symbols		
		Allow multiples and fractions		
		Allow 2Na + $O_2 \rightarrow Na_2O_2$	1	
	Vellow/or	ange flame/light AND white solid/powder/smoke/fumes/ash	_	
		Allow yellow solid		
		Do not allow ppt. Apply list principle		
		Ignore formulae in observations		
		5	1	
(b)	4P + 5O ₂	$\rightarrow P_4O_{10} \: / \: P_4 + 5O_2 \rightarrow P_4O_{10}$		
-		Ignore state symbols		
		Do not allow equations with P_2O_5		
		Allow $4P + 3O_2 \rightarrow P_4O_6 / P_4 + 3O_2 \rightarrow P_4O_6$	-	
			1	
	white flam	ne/light OR white fumes/smoke/solid/powder/ash		

		Do not allow ppt. Apply list principle	1
(c)		ater/increased charge/charge density on magnesium ion/Mg ²⁺ (speci tion of <u>ion(s)</u> can be scored from M2) <i>Allow magnesium <u>ion</u> is smaller (than sodium ion);</i> <i>Ignore atomic radius</i> <i>If mention of molecules, intermolecular forces,</i> <i>metallic bonding then CE=0</i>	fic 1
	oppo	nger attraction for <u>anions</u> /oxide <u>ion</u> / stronger attraction between ositely charged <u>ions</u> / stronger attraction between Mg ²⁺ and O ²⁻ / nger <u>ionic</u> bonding <i>Ignore references to covalent character</i> <i>Mark independently</i>	1
(d)	(SiC	 92) giant covalent / macromolecular Do not allow M1 and M2 if it is clear that the candidate is referring to the structure of the elements rather than the oxides. M3 could score from correct comparison of giant covalent to simple molecular Allow giant molecule 	1
	(P ₄ C	D ₁₀) (simple) molecular Not simple covalent	1
		valent) bonds (throughout structure) of SiO ₂ much stronger than the <u>es between molecules/intermolecular forces</u> in P ₄ O ₁₀ <i>Reference to 'between molecules' in M3 would also</i> <i>get M2</i> <i>Allow van der Waals' forces between molecules</i> <i>M3 dependent on correct</i> <u>M1</u> and <u>M2</u>	1
(e)	M 1	Sample in suitable melting point apparatus (e.g. capillary in oil bath/Thiele tube / melting point apparatus) Do not allow water bath	1
	M2	Heat slowly/gradually/gently (to establish melting point range)	1
	М3	Lower melting point / (broad) range of melting point indicates presence of impurities OR melting point agrees with/close to data book value / melts sharply/over narrow range / melting point exactly 573K indicates	
		purity	1

[12]

Q4.

[1]

1

1

1

1

1

Q5.

(a) $P_4 + 5 O_2 \rightarrow P_4 O_{10}$

allow 4 P + 5 $O_2 \rightarrow P_4O_{10}$ allow multiples ignore state symbols

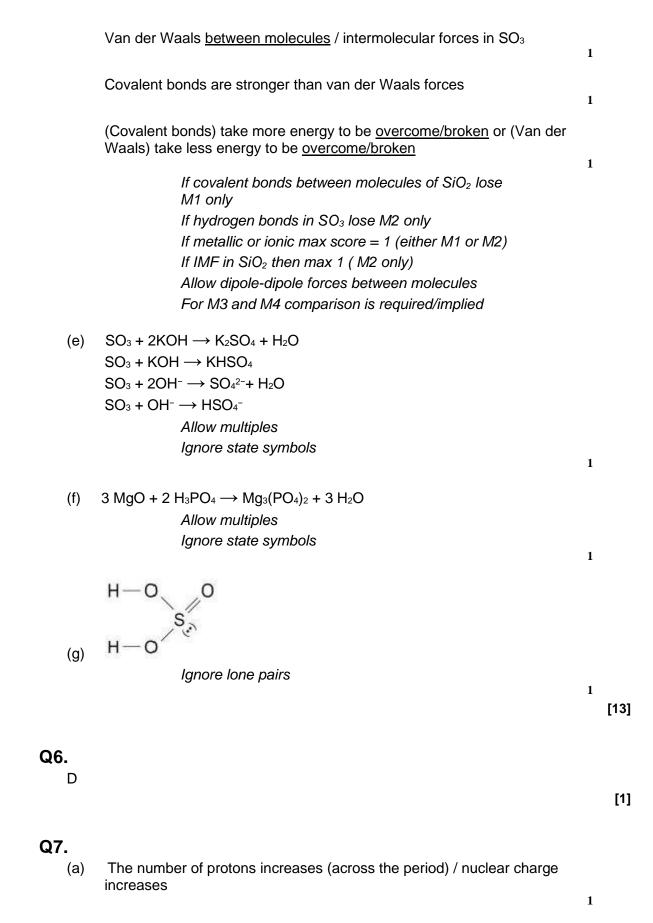
(b) React with water / add water / solution (of substances in question) If no M1 then CE = 0/3

Add litmus paper / universal indicator / measure pH (with pH meter) Allow other reagents in solution, e.g. sodium carbonate solution, that give a positive result Allow other indicators with appropriate colour changes

M3 is dependent on M2

Litmus: blue with sodium oxide (solution) **and** red with phosphorus oxide (solution)OR

If blue litmus added phosphorus oxide solution goes red OR If red litmus added sodium (hydr)oxide goes blue


Universal Indicator: blue/ purple with sodium oxide (solution) **and** red with phosphorus oxide (solution)

pH meter or Universal Indicator: sodium (hydr)oxide (solution) has a higher pH (than phosphorus oxide (solution)) or vv

sodium (hydr)oxide pH (12 to 14) **and** phosphorus oxide (solution) pH (-1 to 2)

For pH meter or Universal Indicator: allow sodium (hydr)oxide (solution) has a higher pH and phosphorus oxide (solution) has lower pH.

- (c) For silicon dioxide giant covalent (molecule)/ macromolecular
 1
 For sulfur trioxide molecular / (simple) molecule
 1
 Do not allow simple covalent
- (d) Covalent bonds (between atoms) in SiO₂

Therefore, the attraction between the nucleus and electrons increases

	Can only score M2 if M1 is correct		1	
(b)	S ₈ molecules are bigger than P ₄ molecules Allow sulfur molecules have bigger surface area and sulfur molecules have bigger M _r		1	
	Therefore, van der Waals / dispersion / London forces between molecules are stronger in sulfur		1	
(c)	Sodium oxide contains O ²⁻ ions		1	
	These O ²⁻ ions react with water forming OH- ions			
	$O^{2-} + H_2O \longrightarrow 2OH$ scores M1 and M2		1	
(d)	$P_4O_{10} + 12OH^- \longrightarrow 4PO_{4^{3-}} + 6H_2O$		1	[7]
Q8.				
(a)	(i) <u>Covalent</u> Ignore simple / molecular Do not allow macromolecular/giant covalent/dative/dipole- dipole/Hydrogen bonds Ignore VdW	1		
	(ii) P / phosphorus / P ₄	1		
	(iii) $P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4$ Mark independently of (a)(ii) Accept multiples/fractions Ignore state symbols			
	Allow ions on the RHS (\rightarrow 12H ⁺ + 4PO ₄ ³⁻) Allow correct equations from P ₄ O ₆ , P ₂ O ₃ and P ₂ O ₅			
	$P_4O_6 + 6H_2O \longrightarrow 4H_3PO_3$			
	$P_2O_3 + 3H_2O \longrightarrow 2H_3PO_3$			
	$P_2O_5 + 3H_2O \longrightarrow 2H_3PO_4$	1		
(b)	(i) <u>Ionic</u>			
	Ignore giant / lattice	1		

	(ii)	Na / Sodium	1
	(iii)	2Na + 2H ₂ O → 2Na ⁺ + 2OH ⁻ + H ₂ Allow equation to form 2NaOH Accept multiples/fractions Ignore state symbols	1
	(iv)	Na₂O + 2HCI → 2NaCl + H₂O Accept multiples/fractions Ignore state symbols Allow ions, but do not allow H+ only for the acid	1
(c)	(i)	<u>Ionic</u> Allow ionic and covalent / ionic with covalent character	1
	(ii)	Al ₂ O ₃ Ignore state symbols	1
	(iii)	Reacts with acids and bases Allow reacts with acids and alkalis / acts as both an acid and a base / shows acidic and basic properties	1
	(iv)	$AI_2O_3 + 6HCI \longrightarrow 2AI^{3+} + 6CI^- + 3H_2O$	
		$AI_2O_3 + 6H^+ \longrightarrow 2AI^{3+} + 3H_2O$ Allow equation to form $2AICI_3$ (but not AI_2CI_6) Allow equations with other acids	1
		$\begin{array}{l} Al_2O_3 + 2NaOH + 3H_2O \longrightarrow 2Na^+ + 2[Al(OH)_4]^-\\ Al_2O_3 + 2OH^- + 3H_2O \longrightarrow 2[Al(OH)_4]^-\\ Al_2O_3 + 2NaOH + 7H_2O \longrightarrow 2Na^+ + 2[Al(OH)_4 (H_2O)_2]^-\\ Al_2O_3 + 2OH^- + 7H_2O \longrightarrow 2[Al(OH)_4 (H_2O)_2]^-\\ Allow equations to form 2Na[Al(OH)_4] or\\ 2Na[Al(OH)_4(H_2O)_2]\\ Allow equations with other alkalis\\ Allow correct equations which form [Al(OH)_6]^{3-}\\ Allow equations to form [Al(OH)_x(H_2O)_{6-x}]^{3-x} etc\end{array}$	
		Ignore state symbols	1

Q9.			
(a)	M1	(oxide ions react with water to) form/produce hydroxide ions $M1 O^{2-} + H_2 O \rightarrow 2OH^{-}$ Ignore all non-ionic equations	1
	M2	sodium hydroxide more soluble than magnesium hydroxide M2 ideas that more sodium hydroxide dissolves / dissociates Allow sodium oxide more soluble / dissociates more than magnesium oxide NOT 'molecules' or 'atoms'	1
(b)	P ₄ O ₁	$_{0}$ + 6H ₂ O \rightarrow 4H ₃ PO ₄ Allow multiples and fractions Allow ionic products NOT P ₂ O ₅	1
(c)	M 1	$V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$ Allow 1 mark if both equations correct, but in wrong order	1
	М2	$V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$ ALLOW multiples	1

[5]