Question number	Answer	Marks	Guidance
1 (a)	Charge on oxide ion bigger than on chloride or oxide ion smaller than chloride	1	
	or charge density on oxide ion greater than chloride		
	Therefore <u>electrostatic</u> attraction is stronger	1	Can be given independent of first mark
1 (b)	MgO (is a white solid that) forms a suspension (or slightly soluble)	1	
	$\begin{array}{c} MgO + H_2O \rightarrow Mg(OH)_2 \\ or \rightarrow Mg^{2+} + 2OH \end{array}$	1	
	pH is 8 to 10	1	
	SO ₂ dissolves/forms (colourless) solution	1	
	$SO_2 + H_2O \rightarrow H_2SO_3$ or $\rightarrow H^+ + HSO^-$ or $\rightarrow 2H^+ + SO^{2-}$	1	
	pH is 1 to 4	1	mark both pH values independently of equations
1 (c)	$Al(OH)_3 + OH^- \rightarrow Al(OH)_4^-$ species mark or forms $Al(OH)_6^{3-}$ etc.	1	
	Balanced equation	1	
	Al(OH) ₃ + 3H ⁺ + 3H ₂ O \rightarrow Al(H ₂ O) ₆ ³⁺ species mark (or forms [Al(H ₂ O) ₅ (OH)] ²⁺ , Al ³⁺ , AlCl ₃ (salt + water etc.)	1	must start equations with $Al(OH)_3$ or $Al(OH)_3(H_2O)_n$ where
	Balanced equation	1	n = 1 to 3
2	Na_2O : vigorous or exothermic reaction; or forms a colourless solution, pH of solution formed is 13 or 14. $Na_2O + H_2O \rightarrow 2NaOH$	6	
	P ₄ O ₁₀ or P ₂ O ₅ : vigorous or exothermic reaction; or forms a colourless solution, pH of solution formed is 0 or 1.		You can write an ionic equation if you prefer.
	$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$		You could write an equation from P ₂ O ₅ .
3 (a) (i)	Ionic	1	
3 (a) (ii)	Sodium	1	
3 (a) (iii)	$Na_2O + H_2O \rightarrow 2NaOH$	1	
3 (b) (i)	Covalent	1	
3 (b) (ii)	Phosphorus	1	

3 (b) (iii)	H ₃ PO ₄	1	
3 (c) (i)	macromolecular	1	Accept: giant covalent or giant molecular.
3 (c) (ii)	Silicon	1	
3 (c) (iii)	e.g., CaO + SiO $_2$ \rightarrow CaSiO $_3$	2	One mark for the base used, i.e., CaO, and one mark for the balanced equation.
4 (a) (i)	P ₄ O ₁₀ or SO ₃	1	This means it will be an acidic solution and therefore an oxide of a non-metal.
4 (a) (ii)	Na ₂ O	1	This means it will be an alkaline solution and therefore an oxide of a metal.
4 (b) (i)	$MgO + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2O$	1	You could also have an ionic equation, i.e., MgO + 2H ⁺ → Mg ²⁺ + H ₂ O
4 (b) (ii)	2NaOH + SiO ₂ → Na ₂ SiO ₃ + H ₂ O	1	You could also have an ionic equation, i.e., $SiO_2 + 2OH^- \rightarrow 2Na^+ + H_2O$
4 (b) (iii)	3Na2O + 2H ₃ PO ₄ → 2Na ₃ PO ₄ + 3H ₂ O	1	You could also have an ionic equation, i.e., $Na_2O + 2H^+ \rightarrow 2Na^+ + H_2C$
4 (c)	P ₄ O ₁₀ is molecular or simple covalent. This means that there are weak intermolecular forces between molecules.	4	These forces are van der Waals forces.
	SiO ₂ is a macromolecule or giant covalent molecule. Many strong covalent bonds must be broken.		These bonds must be stated to be covalent and remember they are between the atoms in the giant molecule.
5 (a)	Na ₂ O + H ₂ O \rightarrow 2NaOH pH = 14	2	Remember oxides of metals give alkaline solutions when
5 (b)	$SO_2 + H_2O \rightarrow H_2SO_3$ pH = 1-3	2	dissolved and oxides of non-metals give acidic solutions when dissolved.
6 (a) (i)	${f P}$ is Na ₂ O or sodium oxide. Ionic Ions are not free to move in the solid state. Ions are free to move when molten or in aqueous solution. Na ₂ O + H ₂ O \rightarrow 2NaOH	9	Since the identity is asked for, you can give a formula or a name. If a formula is given this must be correct.
6 (a) (ii)	${f Q}$ is SO_2 or sulfur dioxide. covalent Intermolecular forces are weak or van der Waals forces are weak. $SO_2+H_2O \rightarrow H_2SO_3$		Since the identity is asked for, you can give a formula or a name. If a formula is given this must be correct. The intermolecular forces are not hydrogen bonds.
6 (b) (i)	Amphoteric	6	This is because it reacts with acids and alkalis.

6 (b) (ii)	Al(OH) ₃ + NaOH → NaAl(OH) ₄		In this equation one mark is for stating that R is Al(OH) ₃ and the other for a balanced equation. You could also have
			ionic equations, e.g. $Al(OH)_3 + OH^- \rightarrow [Al(OH)]^-$
			You could start with the identity of R as Al(OH) ₃ (H ₂ O) ₃ and so the equation would be Al(OH) (H O) $+$ OH ⁻ \rightarrow
			[Al(OH) (H O)] ⁻ + H O
	$2AI(OH)_3 + 3H_2SO_4 \rightarrow AI_2(SO_4)_3 + 6H_2O$		You could start with Al(OH) (H O) and have H ⁺ as the acid, so the equation would be Al(OH) (H O) + H ⁺ →
			[Al(OH) (H O)] + H O In the equation there is one mark for the correct product and one mark for the balanced
			equation.
6 (b) (iii)	There is only one mark here and any of the following answers are acceptable:		
	large lattice energy;strong covalent bonds;		
	 ΔH_{soln} is very positive; 		
	 ΔG is very positive; 		
	 The sum of the hydration energies is less than the covalent bond energies. 		
7 (a)	White powder / solid / ash / smoke	1	Ignore ppt / fumes
	Bright / white light / flame	1	Allow glows white / glows bright
	$Mg + H_2O \rightarrow MgO + H_2$	1	Ignore state symbols Ignore reference to
7 (b)	Mg ²⁺ / magnesium ion has higher charge than Na ⁺	1	effervescence or gas produced Allow Mg ²⁺ ions smaller /
. (3)			greater charge density than Na ⁺ ions
			Allow Mg atoms smaller than Na (atoms)
			Allow magnesium has more delocalised electrons
			Must be a comparison
			Ignore reference to nuclear charge
	Attracts <u>delocalised / free / sea of</u> electrons more strongly / metal–metal bonding stronger / metallic bonding stronger	1	Wrong type of bonding, mention of molecules CE = 0

7 (c)	Structure: Macromolecular / giant molecule / giant covalent	1	Mark independently
	Bonding: Covalent / giant covalent	1	
	Physical Properties: Any two from: Hard Brittle / not malleable Insoluble Non conductor	2	Ignore correct chemical properties Ignore strong, high boiling point, rigid
7 (d)	Formula: P ₄ O ₁₀	1	Mention of ionic or metallic, can score M1 only
	Structure: Molecular	1	If macromolecular, can score M1 & M3 only
	Bonding: Covalent / shared electron pair	1	
	van der Waals' / dipole–dipole forces <u>between</u> <u>molecules</u>	1	Allow van der Waals intermolecular forces, and dipole–dipole intermolecular forces but do not allow intermolecular forces alone
7 (e)	SO + H O → H ⁺ + HSO ⁻	1	Products must be ions Allow $SO_2 + H_2O$ $\longrightarrow 2H^+ + SO^{2-}$ Allow two equations showing intermediate formation of H_2SO_3 that ends up as ions Ignore state symbols Allow multiples
7 (f)	$\begin{aligned} P_4O_{10} + 6MgO &\rightarrow 2Mg_3(PO_4)_2\\ \textbf{OR} \ P \ O &+ 6MgO &\rightarrow 6Mg^{2^+} + 4PO \end{aligned} ^{3^-}\\ \textbf{OR} \ P_2O_5 + 3MgO &\rightarrow Mg_3(PO_4)_2 \end{aligned}$	1	Ignore state symbols Allow multiples
8 (a)	MgO is ionic	1	If not ionic, CE = 0
	Melt it	1	If solution mentioned, cannot score M2 or M3
	(Molten oxide) conducts electricity	1	Allow acts as an electrolyte. Cannot score M3 unless M2 is correct
8 (b)	Macromolecular	1	CE = 0 if ionic, metallic or molecular. Allow giant molecule.
	Covalent bonding	1	Giant covalent scores M1 and M2
	Water cannot (supply enough energy to) break the covalent bonds / lattice	1	Hydration enthalpy < bond enthalpy.

8 (c)	(Phosphorus pentoxide's melting point is) lower	1	If M1 is incorrect, can only score M2
	Molecular with covalent bonding	1	M2 can be awarded if molecular mentioned in M3
	Weak / easily broken / not much energy to break intermolecular forces	1	Intermolecular / IMF means same as between molecules.
	OR weak van der Waals / dipole-dipole forces of attraction between molecules		
8 (d)	Reagent (water or acid)	1	Can be awarded in the equation.
	Equation, e.g., MgO + 2HCl → MgCl ₂ + H ₂ O	1	MgO + H ₂ O \rightarrow Mg(OH) ₂ Equations can be ionic but must show all of the reagent, e.g., H ⁺ + Cl ⁻ Simplified ionic equation without full reagent can score M2 only. Allow 6MgO + P ₄ O ₁₀ \rightarrow 2Mg ₃ (PO ₄) ₂
8 (e)	$P_4O_{10} + 12NaOH \rightarrow 4Na_3PO_4 + 6H_2O$	1	Allow P ₂ O ₅ and acid salts. Must be NaOH not just hydroxide ions.
9 (a)	To prevent it coming into contact/reacting with oxygen/air	1	Allow because it reacts with air/oxygen And because with air/oxygen it forms an oxide. (Oxide, if identified, must be correct P ₄ O ₁₀ , P ₂ O ₅ , P ₄ O ₆ , P ₂ O ₆)
9 (b)	One molecule contains 4P and 10O/the molecular formula is P ₄ O ₁₀	1	Allow exists as P ₄ O ₁₀ Do not allow reference to combination of two P ₂ O ₅ molecules Ignore any reference to stability
9 (c)	P ₄ O ₁₀ is a bigger molecule (than SO ₃)/greater Mr/more electrons/ greater surface area <u>Van der Waals</u> / vdW <u>forces between molecules</u> are stronger/require <u>more energy to break</u>	1	Penalise SO ₂ for one mark (max 1) CE = 0 if mention of hydrogen bonding/ionic/giant molecule/breaking of covalent bonds Do not allow just more van der Waals forces Ignore any reference to dipoledipole forces
9 (d)	$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$	1	Allow correct ionic equations Ignore state symbols
	pH must be in the range −1 to +2	1	Allow −1 to +2 Mark independently

9 (e) (i)	$3 MgO + 2 H_3 PO_4 \rightarrow Mg_3 (PO_4)_2 + 3 H_2 O$ OR MgO + $2 H_3 PO_4 \rightarrow Mg (H_2 PO_4)_2 + H_2 O$ OR MgO + $H_3 PO_4 \rightarrow Mg HPO_4 + H_2 O$	1	Allow MgO + $2H^+ \rightarrow Mg^{2+}$ + H_2O Allow magnesium phosphates shown as ions and ionic equations Ignore state symbols
9 (e) (ii)	MgO is sparingly soluble/insoluble/weakly alkaline	1	Excess/unreacted MgO can be filtered off/separated
9 (e) (iii)	An excess of NaOH would make the lake alkaline/toxic/kill wildlife	1	Allow pH increases