M1.		 (a) Na₂O ionic <i>mention of molecules/intermolecular forces/delocalised</i> <i>electrons, CE = 0</i> 	1
		Strong forces between ions/strong ionic bonding Allow lots of energy to break bonds provided M1 scored	1
		SiO₂ macromolecular Allow giant molecular/giant covalent. If ions mentioned, CE = 0	1
		Strong <u>covalent bonds</u> (between atoms) Allow lots of energy to break <u>covalent</u> bonds If breaking intermolecular forces are mentioned, CE = 0 for M4	
	(►)	l link on	1
	(b)	Higher	1
		Li⁺ (or Li ion) smaller than Na⁺ <i>Must imply Li</i> ⁺ ion Allow Li⁺ has higher charge/size ratio not charge/mass	1
		Attracts O ²⁻ ion more strongly Allow stronger ionic bonding	
		Allow additional attraction due to polarisation in Li₂O M3 can only be scored if M2 gained	1
	(c)	(i) Molecular Do not allow simple covalent BUT simple covalent molecule scores M1 and M2	1
		Covalent bonds (between P and O) Ignore reference to van der Waals' or dipole-dipole	1

	(ii)	Weak van der Waals' forces and/or dipole-dipole forces between molecules		
		Allow weak <u>inter-molecular</u> forces – can score "between" molecules in (c)(i)		
		CE = 0 if ionic or macromolecular mentioned in (c)(i)		
		Must state van der Waals' forces are weak OR low energy needed to break van der Waals' forces		
		needed to break van der waars Torces	1	
(d)		w –1 to +2		
(u)			1	
	P₄O₁	$_{\scriptscriptstyle 0}$ + 6H ₂ O \rightarrow 12H ⁺ + 4PO ₄ ³⁻ (or 4H ₃ PO ₄)		
		Allow balanced equations to form HPO ₄ ²⁻ or H ₂ PO ₄ ⁻		
		ignore state symbols	1	
	Allov	v 12 to 14		
	7 1101		1	
	Na₂C	$0 + H_2O \rightarrow 2Na^+ + 2OH^-$		
		Allow $2Na^{+} + O^{-}$ on LHS, 2NaOH on RHS, ignore s.s.		
		Mark independently	1	
(e)	6Na	$I_2O + P_4O_{10} \rightarrow 4Na_3PO_4$	1	
	Acid	-base		
	71010	Allow neutralisation, mark independently of M1		
		Do not allow Acid + Base \rightarrow Salt + Water	1	
			I	[16]
	(-)			
	(a)	Electronegativity increases	1	
	Prot	on number increases (increase in nuclear charge)		
		· · · · · · · · · · · · · · · · · · ·	1	
	Sam	e number of electron shells/levels		
		Or same radius or Shielding of outer electrons remains the		

M2.

	same	1
	Attraction of <u>bond pair</u> to nucleus increases Allow 'electrons in bond' instead of 'bond pair'	1
(b)	Big <u>difference</u> in electronegativity leads to ionic bonding, smaller covalent <i>Lose a mark if formula incorrect</i>	1
	Sodium oxide ionic lattice	1
	Strong forces of attraction between ions	1
	P₄O₁₀ covalent molecular Must have covalent and molecular (or molecules)	1
	Weak (intermolecular) forces between molecules Or weak vdW, or weak dipole–dipole between molecules	1
	melting point Na₂O greater than for P₄O₁₀ Or argument relating mpt to strength of forces	1
(c)	Moles NaOH = 0.0212 × 0.5 = 0.0106 M1 moles of NaOH correct	1
	Moles of H₃PO₄ = 1/3 moles of NaOH (= 0.00353) <i>M2 is for 1/3</i>	1
	Moles of P in 25000 I = 0.00353 × 10° = 3.53 × 10° M3 is for factor of 1,000,000	1
	Moles of $P_4O_{10} = 3.53 \times 10^3/4$ M4 is for factor of 1/4 (or 1/2 if P_2O_3)	1
	Mass of $P_4O_{10} = 3.53 \times 10^3/4 \times 284 = 0.251 \times 10^6$ g = 251 kg (Or if $P_2O_5 3.53 \times 10^3/2 \times 142$) M5 is for multiplying moles by M, with correct units allow conseq on incorrect M4	

МЗ.

(a)

- (i) can form a solution with pH less than 3: P_4O_{10} or SO_3 (1)
- (ii) can form a solution with with a pH greater than 12: Na₂O (1)
 penalise any wrong answer to zero
- (b) (i) MgO + 2HNO₃ \rightarrow Mg(NO₃)₂ + H₂O or an ionic equation (1) i.e. MgO + 2H⁺ \rightarrow Mg²⁺ + H₂O <u>not</u> O²⁻ + 2H⁺ \rightarrow H₂O
 - (ii) $2NaOH + SiO_2 \rightarrow Na_2SiO_3 + H_2O$ or ionic equation (1) i.e. $SiO_2 + 2OH^- \rightarrow SiO_3^{2-} + H_2O$
 - (iii) $3Na_2O + 2H_3PO_4 \rightarrow 2Na_3PO_4 + 3H_2O$ etc or ionic equation (1) *i.e.* $Na_2O + 2H^* \rightarrow 2Na^* + H_2O$

 (c) P₄O₁₀ is a molecular (structure) or simple covalent (1) Weak <u>intermolecular forces or van der Waals</u> forces (between molecules) (1) SiO₂ is a macromolecule / giant covalent / giant molecule (1) Not giant lattice

(Strong) covalent bonds (between atoms) must be broken (1)

[15]

1

2

3

4

M4.	(a)	(i) O	xide 1	В		1		
	Oxide 2 E							
	Explanation			Low melting point or weak van der Waals' forces between molecules		1		
	(ii)	Chemi	cal test Add	water or flame test		1		
	Test pH or fl			our		1		
		Observ	/ation pH =	= 13/14 or colour yellow		1		
(b)	(i)	Equati	ion Ca	CO₃ → CaO + CO				
(6)		-				1		
	(ii)	Produc				1		
	(iii)	Dispos	sal of large q	uantities of CaSO₃ (allow CaS	SO₄)	1		
		Produc	ces CO₂ or us	ses up CaCO₃		1		

[10]