Q1.Some melting points of Period 3 oxides are given in this table.

	Na₂O	SiO ₂	SO ₂	SO₃
Melting point / K	1548	1883	200	290

(a)	Explain, in terms of structure and bonding, why sodium oxide has a high melting point.					
		(2)				
(b)	Explain, in terms of structure and bonding, why sulfur trioxide has a higher melting point than sulfur dioxide.					
		(2)				
(c)	Some Period 3 oxides have basic properties.					
	State the type of bonding in these basic oxides. Explain why this type of bonding causes these oxides to have basic properties.					
	Type of bonding					
	Explanation					

(3)

/**	ulfur dioxide reacts with wa	16 17 11 1	a c	
(i)	lons are formed when s Write an equation for th		th water.	
(ii)) With reference to your of forms a weakly acidic s		i), suggest why sulfur dioxid	е
	TOTTIS A WEAKIY ACIDIC S	olution.		
e) S	uggest why silicon dioxide			
	soluble in water.			
			(Tot	al 10
e data i	n the table below show the	melting points of oxide	es of some Period 3 elemen	ts.
e data i		T T	es of some Period 3 elemen	ts.
	Na₂O	P ₄ O ₁₀	SO ₂	ts.
e data i T"/K		T T		ts.
T _m /K	Na₂O 1548	P ₄ O ₁₀ 573	SO ₂	ts.
T _∞ /K	Na ₂ O 1548 terms of structure and bor	P ₄ O ₁₀ 573	SO ₂	ts.
T _m /K	Na ₂ O 1548 terms of structure and bor	P ₄ O ₁₀ 573 nding, explain why	SO ₂	ts.

		(Extra space)	(2
	(ii)	sulfur dioxide has a low melting point.	•
		(Extra space)	(2
(b)	Exp	lain why the melting point of P₄O₁₀ is higher than the melting point of SO₂	
		ra space)	(2
(c)	appr	e equations for the reactions of Na_2O and P_4O_{10} with water. In each case give the oximate pH of the resulting solution.	
	рН		
	Equa	ation for P₄O₁₀	
	рН		

			(4)
	(d)	Write an equation for the acid–base reaction that occurs when Na $_2\!O$ reacts with $P_4O_{\scriptscriptstyle 10}$ in the absence of water.	
		(Total 11 ma	(1) arks)
Q3.		Sodium, aluminium and silicon are solid elements with a silver colour. These	
ųσ.	elem reac	nents react with oxygen to form oxides with high melting points. Aluminium is a tive metal, but it resists corrosion in water because it has a surface coating of ninium oxide.	
	(a)	In terms of its structure and bonding, explain why silicon dioxide has a high melting point.	
			(3)
	(b)	State the type of bonding in aluminium oxide.	(1)
	(c)	Write an equation for the reaction of aluminium with oxygen.	
	(<i>o</i>)		(1)

(d)	_	gest one property of the aluminium oxide coating that causes aluminium to st corrosion in water.	
			(1)
(e)		dium metal is not resistant to corrosion in water, despite having a surface in sing of sodium oxide. Write an equation to show how sodium oxide reacts with er.	
			(1)
(f)	Alur	minium oxide is amphoteric. It reacts with acids and alkalis.	
	(i)	Write an equation for the reaction between aluminium oxide and hydrochloric acid.	
			(1)
	(ii)	Write an equation for the reaction between aluminium oxide and an excess of aqueous sodium hydroxide.	
			(1)
(g)	hydr	con dioxide does not react with hydrochloric acid but it does react with sodium roxide. State one property of silicon dioxide that can be deduced from this rmation and write an equation for its reaction with sodium hydroxide.	
	Prop	perty	
	Equa	ation(Total 11 ma	(2) irks)

a)	Suggest why white phosphorus is stored under water.
))	Phosphorus(V) oxide is known as phosphorus pentoxide. Suggest why it is usually represented by P_4O_{10} rather than by P_2O_5
:)	Explain why phosphorus(V) oxide has a higher melting point than sulfur(VI) oxide.
)	Write an equation for the reaction of P_4O_{10} with water to form phosphoric(V) acid. Give the approximate pH of the final solution.
	Equation
	pH
)	A waste-water tank was contaminated by P ₄ O ₁₀ . The resulting phosphoric(V) acid solution was neutralised using an excess of magnesium oxide. The mixture produced was then disposed of in a lake.

	(i)	Write an equation for the reaction between phosphoric(V) acid and magnesium oxide.
		(1)
	(ii)	Explain why an excess of magnesium oxide can be used for this neutralisation.
	(iii)	Explain why the use of an excess of sodium hydroxide to neutralise the
		phosphoric(V) acid solution might lead to environmental problems in the lake.
Q5.	This o	question is about the chemistry of the Period 3 elements and the trends in their
	(a) (i)	Describe what you would observe when magnesium burns in oxygen. Write an equation for the reaction that occurs. State the type of bonding in the oxide formed.
		Observations

		Equation	
		Type of bonding	(4)
	(ii)	Describe what you would observe when sulfur burns in oxygen. Write an equation for the reaction that occurs. State the type of bonding in the oxide formed.	
		Observations	
		Equation	
		Type of bonding	(4)
(b)	an a	te the type of bonding in sodium oxide. Explain why sodium oxide reacts to form lkaline solution when added to water.	
	Expl	anation	
			(3)
(c)	Outlions	line an experiment that could be used to show that aluminium oxide contains	
	(Ext	ra space)	
			(2)

(d)		gest one reason why a thin layer of aluminium oxide protects aluminium from osion in moist air.	
			(1)
(e)	Write follow	e an ionic equation in each case to show how aluminium oxide reacts with the wing	
	(i)	hydrochloric acid	
			(1)
	(ii)	aqueous sodium hydroxide.	
		(Total 16 ma	(1) arks)