M1.(a) Na₂O is an ionic <u>lattice</u> / giant ionic / ionic crystal

CE= 0 if molecules, atoms, metallic mentioned Mention of electronegativity max 1 out of 2

1

With strong forces of attraction between ions

Allow strong ionic bonds / lots of energy to separate ions

1

(b) SO₃ is a larger molecule than SO₂

Allow greater M_r / surface area

1

So <u>van der Waals</u>' forces <u>between molecules</u> are stronger Any mention of ions, CE= 0

1

(c) Ionic

Do not allow ionic with covalent character

1

Contains O2- ions / oxide ions

Equations of the form $O^{2-} + H^+ \rightarrow OH^- / O^{2-} + 2H^+ \rightarrow H_2O / O^{2-} + H_2O \rightarrow 2OH^-$ score M2 and M3

1

These / O^{2-} ions (accept protons to) form OH^- / hydroxide / water (must score M2 to gain M3)

1

(d) (i) $SO_2 + H_2O \rightarrow H^+ + HSO_3^-$

Allow $2H^+ + SO_3^2$ but no ions, no mark Only score (d)(ii) if (d)(i) correct

1

	(ii) Reaction is an equilibrium / reversible reaction displaced mainly to the left / partially ionised / dissociated Allow reaction does not go to completion	1
	(e) SiO₂ reacts with bases / NaOH / CaO / CaCO₃ Ignore incorrect formulae for silicate	1 [10]
M2 .(a) (i)	<u>Ionic lattice / solid / giant ionic</u> $CE = 0/2 \ \textit{if molecules / IMFs / atoms / metallic}$	1
	Strong (electrostatic) forces/attraction between ions Allow strong ionic bonds for M2 only Allow lot of energy to break ionic bonds	1
	(ii) Molecular/molecules	1
	Weak dipole-dipole and/or van der Waals forces <u>between molecules</u> <i>QoL Type of force must be mentioned</i>	1
	(b) P_4O_{10} bigger molecule/has larger surface area than SO_2 Allow M_r of P_4O_{10} greater than for SO_2 If P_4O_{10} macromolecule/ionic, $CE = 0/2$	1

van der Waals forces <u>between molecules</u> stronger Allow stronger IMF

1

(c) Na₂O + H₂O \rightarrow 2Na⁺ + 2OH⁻ Allow 2NaOH

1

14

Allow 12-14

1

$$P_4O_{10}$$
 + $6H_2O$ \rightarrow $4H_3PO_4$
 Allow ions

1

0

Allow -1 to +2

1

1

(d)
$$6Na_2O + P_4O_{10} \rightarrow 4Na_3PO_4$$

Allow ionic

Allow correct formula of product with atoms in any order

[11]

M3. (a) <u>Macro</u>molecular

Or <u>giant</u> molecule
Or <u>giant</u> covalent (also gains M2)
Do not allow giant atomic
Ionic/metallic CE=0 for all 3 marks

1

Covalent bonding (between atoms)

Do NOT allow if between molecules

1

	Many/stron	g bonds to be broken (or lots of energy required) Lose both bonding marks if contradiction e.g. mention of intermolecular forces Note: 'covalent bonds between molecules' loses M2 but not M3	1
(b)	Al ₂ O ₃ <u>ionic</u>	Allow <u>ionic</u> + covalent/ <u>ionic</u> with covalent character	1
(c)	2AI + 3/2O;	₂ → Al₂O₃ Allow multiples Ignore state symbols	1
(d)	Insoluble/ir	mpermeable/non-porous Or does not react/inert Do not allow thick layer Must imply property of Al ₂ O ₃ not Al	1
(e)	Na ₂ O + H ₂ O	O → 2NaOH Or Na₂O + H₂O → 2Na⁺ + 2OH	1
(f)	(i) Al ₂ O ₃	$_{0}$ + 6HCl \rightarrow 2AlCl $_{3}$ + 3H $_{2}$ O Ionic equations with Al $_{2}$ O $_{3}$ possible e.g. Al $_{2}$ O $_{3}$ + 6H $^{+}$ \rightarrow 2Al $^{3+}$ + 3H $_{2}$ O Do not allow formation of Al $_{2}$ Cl $_{6}$	1
	, ,	+ $2NaOH + 3H_2O \rightarrow 2NaAl(OH)_4$ Other equations with Al_2O_3 are possible e.g. $Al_2O_3 + 2OH + 3H_2O \rightarrow 2[Al(OH)_4]^-$ $Al_2O_3 + 2OH + 7H_2O \rightarrow 2[Al(H_2O)_2(OH)_4]^-$	1

(g) SiO₂ acidic/Lewis acid/electron pair acceptor

1

1

Allow SiO₂ **not** amphoteric Do NOT allow BL acid

Other equations with SiO₂ are possible e.g.

$$SiO_2 + 2OH \rightarrow SiO_3^{2-} + H_2O$$

$$SiO_2 + 2OH^+ + 2H_2O \rightarrow Si(OH)_6^{2-}$$

[11]

M4.(a) To prevent it coming into contact/reacting with oxygen/air

Allow because it reacts with air/oxygen And because with air/oxygen it forms an oxide. (Oxide, if identified, must be correct :- P_4O_{10} , P_2O_5 , P_4O_6 , P_2O_6)

1

(b) One molecule contains 4P and 10O/the molecular formula is P₄O₁₀

Allow exists as P₄O₁₀

Do not allow reference to combination of two P₂O₅ molecules Ignore any reference to stability

1

(c) P₄O₁₀ is a bigger molecule (than SO₃)/greater M_r/more electrons/ greater surface area

Penalise SO₂ for one mark (max 1)

CE = 0 if mention of hydrogen bonding/ionic/ giant molecule/breaking of covalent bonds

1

<u>Van der Waals</u> / vdW <u>forces between molecules</u> are <u>stronger</u>/require <u>more energy</u> to break

Do not allow just more vdW forces
Ignore any reference to dipole-dipole forces

1

 $P_4O_{10} + 6H_2O \ \Box 4H_3PO_4$ Allow correct ionic equations Ignore state symbols 1 pH must be in the range –1 to +2 Allow -1 to +2Mark independently 1 $3MgO + 2H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 3H_2O$ (e) (i) OR MgO + $2H_3PO_4 \rightarrow Mg(H_2PO_4)_2 + H_2O$ $OR MgO + H_3PO_4 \rightarrow MgHPO_4 + H_2O$ Allow MgO + $2H^+ \rightarrow Mg^{2+} + H_2O$ Allow magnesium phosphates shown as ions and ionic equations Ignore state symbols 1 (ii) MgO is sparingly soluble/insoluble/weakly alkaline Excess/unreacted MgO can be filtered off/separated 1 An excess of NaOH would make the lake alkaline/toxic/kill wildlife (iii) Allow pH increases 1 [9] M5. (a) (i) white flame / white light Mark flame independent of other observations 1 solid / powder / smoke / ash / white fumes penalise precipitate penalise wrong colour if more than one observation for M2 apply list principle. (If an observation is incorrect, the incorrect observation negates a

(d)

correct one) 1 $2Mg + O_2 \rightarrow 2MgO$ ignore state symbols allow multiples 1 ionic do not allow reference to covalent character 1 (ii) blue flame do not allow any other colour Mark flame independent of other observations 1 fumes or misty or pungent/choking/smelly gas do not allow incorrect smell (e.g. bad eggs) apply list principle as in (a) (i) do not allow just 'gas' or 'colourless gas' $S + O_2 \rightarrow SO_2$ ignore state symbols allow multiples and S_s 1 covalent penalise giant covalent 1 ionic If covalent, can only score M3 1 O²⁻ / oxide ion reacts with water / accepts a proton M2 requires reference to O²⁻ / oxide ion 1 forming OH- ions/ NaOH / sodium hydroxide (can show in equation from Na₂O even if incorrect) allow 1 $O^{2-} + H_2O \rightarrow 2OH^- or$ $O^2 + H^+ \rightarrow OH^-$ to score M2 & M3 also allow equations with spectator Na+ ions on both sides. 1

(b)

(c)	(heat until) molten				
		or dissolve in <u>molten</u> cryolite			
		do not allow solution in water	_		
			1		
		lucts electricity / can be electrolysed / electrolyse and tify Al / O₂ at an electrode			
		M2 can only be gained if M1 scored			
			1		
(d)	inso	luble (in water)			
(4)		allow oxide impermeable to air / water			
		or oxide is unreactive / inert			
			1		
(e)	(i)	$AI_2O_3 + 6H^+ 2AI^{3+} + 3H_2O$			
(0)	(.)	allow $O^2 + 2H^+ \rightarrow H_2O$			
		and formation of aquated Al³⁺ species			
		allow spectator CI ⁻ ions			
		penalise HCl (not ionic!)			
			1		
	(ii)	$Al_2O_3 + 2OH^- + 3H_2O \rightarrow 2Al(OH)_4^-$			
		or $Al_2O_3 + 6OH^- + 3H_2O \rightarrow 2Al(OH)_6^{3-}$			
		allow formation of Al(H₂O)₂(OH)₄			
		allow Na ⁻ spectator ions			

1

[16]

penalise NaOH (not ionic!)