| | question is about magnesium and its compounds. | |-----|--| | (a) | State one observation when magnesium reacts with steam. | | | Give an equation, including state symbols, for this reaction. | | | Observation | | | Equation | | (b) | Describe the bonding in magnesium. | | | | | (c) | Explain, in terms of structure and bonding, why magnesium chloride has a high melting point. | | | | | | | | | | | | | (Total 8 marks) (1) (2) | Q2 | | at is a use for barium sulfate? | | |----|-----|---|-------------------------| | | _ | | | | | Α | In agriculture to act as a fertiliser | | | | В | In agriculture to neutralise acidic soil | 0 | | | С | In medicine to produce an X-ray image | 0 | | | D | In medicine as an antacid to treat indigestion | 0 | | | | | (Total 1 mark) | | Q3 | | | | | QU | | question is about Group 2 elements and their co | ompounds. | | | (a) | Explain why the melting point of magnesium is point of sodium. | higher than the melting | | | | point of ooding. | (2) | | | (b) | Give an equation to show how magnesium is unthe extraction of titanium. | | | | | Explain, in terms of oxidation states, why magnagent. | nesium is the reducing | | | | Equation | | | | | Explanation | (c) | State what is observed when dilute aqueous sodium hydroxide is added to separate solutions of magnesium chloride and barium chloride. | | |------|---|---------------| | | Observation with magnesium chloride | | | | Observation with barium chloride | | | | (Total 6 m | (2)
narks) | | Q4. | | | | This | s question is about the reactions of magnesium and its compounds. | | | (a) | Magnesium is used in one of the stages in the extraction of titanium. | | | | Give an equation for the reaction between titanium(IV) chloride and magnesium. State the role of magnesium in this reaction. | | | | Equation | | | | Role of magnesium | | | | | (2) | | (b) | A mixture of magnesium oxide and magnesium hydroxide has a mass of 3200 mg | | | | This mixture is reacted with carbon dioxide to form magnesium carbonate and water. The mass of water produced is 210 mg | | | | $Mg(OH)_2 + CO_2 \rightarrow MgCO_3 + H_2O$ | | | | $MgO + CO_2 \rightarrow MgCO_3$ | | | | | | Calculate the percentage by mass of magnesium oxide in this mixture. | | | % of magnesium oxide | | |-----|----------|---|------------------------| | | | | (4)
(Total 6 marks) | | Q5 | | | | | Q.J | | ich property would you expect the element radium, Ra, to possess? | | | | Α | It forms a soluble sulfate. | | | | В | It does not react with water. | | | | С | It is a good conductor of electricity. | | | | D | It forms a covalent fluoride. | | | | | | (Total 1 mark) | | Q6 | . | | | | | | ich statement is not correct? | | | | A | Strontium has a lower first ionisation energy than calcium. | | | | В | Strontium has a larger ionic radius than calcium. | | | | С | Strontium reacts less vigorously with water than calcium. | | | | D | Strontium hydroxide is more soluble in water than calcium hydroxide. | | | | | | (Total 1 mark) | | Q7 | , | | | | Ψ. | Whi | ich property of the Group 2 elements, Ca to Ba, increases with incre
mic number? | asing | | | Α | Atomic Radius | | | | В | Electronegativity | | | | С | First ionisation energy | | | | D | Melting Point | | | | | | (Total 1 mark) | | Wha
wate | | en barium metal is added to an excess of | |-------------|---|--| | Α | Forms a colourless solution onl | ly | | В | Forms a colourless solution and effervesces | d | | С | Forms a white precipitate only | 0 | | D | Forms a white precipitate and effervesces | 0 | | | | (Total 1 mark) | | \$
silve | aqueous solution of a salt gives a
er nitrate and when mixed with d
ch could be the formula of the sa | | | A | BaCl ₂ | | | В | (NH ₄) ₂ SO ₄ | | | С | KCI O | | | D | Sr(NO ₃) ₂ | | | | | (Total 1 mark) | | Whi | ch substance is used to reduce tium metal? | titanium(IV) chloride in the extraction of | | A | Magnesium | 0 | | В | Manganese | 0 | | С | Vanadium | 0 | | D | Zinc | 0 | (Total 1 mark) | Q11 | | ch statement about barium sulfate is correct? | | | |-----|----------|---|----------------|-------| | | V V I II | on statement about bandin suitate is correct: | | | | | Α | It is soluble in water at a temperature of 100 °C. | 0 | | | | В | It is used in medicine because it does not dissolve in body fluids. | 0 | | | | С | It is a pale yellow solid. | 0 | | | | D | It reacts with acidified barium chloride solution. | 0 | | | | | | (Total 1 r | nark) | | Q12 | • | | | | | | | ch compound is used to treat the symptoms of indigestio | n? | | | | Α | MgO | | | | | В | Mg(OH) ₂ | | | | | С | CaO | | | | | D | Ca(OH) ₂ | | | | | | | (Total 1 r | nark) | | | _ | | | | | Q13 | | s question is about s-block metals. | | | | | (a) | Give the full electron configuration for the calcium ion, | Ca²+ | | | | () | g | | | | | | | | (1) | | (| (b) | Explain why the second ionisation energy of calcium is second ionisation energy of potassium. | lower than the | (2) | | Give the formula of the hydroxide of the element in Group 2, from Mg to Ba, that is least soluble in water. | |---| | A student added 6 cm³ of 0.25 mol dm¬³ barium chloride solution to 8 cm³ of 0.15 mol dm¬³ sodium sulfate solution. The student filtered off the precipitate and collected the filtrate. | | Give an ionic equation for the formation of the precipitate.
Show by calculation which reagent is in excess.
Calculate the total volume of the other reagent which should be used by the student so that the filtrate contains only one solute. | | Ionic equation | | Reagent in excess | | Total volume of other reagent | | | | | | | | | | (f) | A sample of strontium has a relative atomic mass of 87.7 and consists of three isotopes, ⁸⁶ Sr, ⁸⁷ Sr and ⁸⁸ Sr In this sample, the ratio of abundances of the isotopes ⁸⁶ Sr : ⁸⁷ Sr is 1:1 | | | | | | |-----|---|---|--|--|--|--| | | State why the isotopes of strontium have identical chemical properties. Calculate the percentage abundance of the 88Sr isotope in this sample. | | | | | | | | Why isotopes of strontium have identical chemical properties | Percentage abundance of 88Sr % | (| | | | | | 1) | Percentage abundance of ⁸⁸ Sr % A time of flight (TOF) mass spectrum was obtained for a sample of barium that contains the isotopes ¹³⁶ Ba, ¹³⁷ Ba and ¹³⁸ Ba | | | | | | | J) | A time of flight (TOF) mass spectrum was obtained for a sample of barium | • | | | | | | 3) | A time of flight (TOF) mass spectrum was obtained for a sample of barium that contains the isotopes ¹³⁶ Ba, ¹³⁷ Ba and ¹³⁸ Ba | | | | | | | (h) | A 137 Ba+ ion travels through the flight tube of a TOF mass spectr with a kinetic energy of 3.65 × 10 ⁻¹⁶ J This ion takes 2.71 × 10 ⁻⁵ s to reach the detector. | ometer | |------|---|-------------------------| | | 1 | | | | $KE = \overline{2} mv^2$ where $m = \text{mass (kg)}$ and $v = \text{speed (m s}^{-1})$ | | | | The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ | | | | Calculate the length of the flight tube in metres. | | | | Give your answer to the appropriate number of significant figure | S. | Length of flight tube | m | | | | (5)
(Total 18 marks) | | | | (Total To marks) | | Q14. | | | | Whi | ch products are formed when magnesium reacts with steam? | | | Α | Magnesium hydroxide and hydrogen | | | В | Magnesium hydroxide and oxygen | | | С | Magnesium oxide and hydrogen | | | | | | (Total 1 mark) 0 **D** Magnesium oxide and oxygen ## Q15. This question is about ion testing. | (a) | Describe how a student could distinguish between aqueous solutions of potassium nitrate, KNO_3 , and potassium sulfate, K_2SO_4 , using one simple test-tube reaction. | | |-----|---|--------------| | | Reagent | | | | Observation with KNO ₃ (aq) | | | | Observation with K ₂ SO ₄ (aq) | | | | | (3) | | (b) | Describe how a student could distinguish between aqueous solutions of magnesium chloride, MgCl ₂ , and aluminium chloride, AlCl ₃ , using one simple test-tube reaction. | | | | Reagent | | | | Observation with MgCl₂(aq) | | | | Observation with AlCl ₃ (aq) | | | | (Total 6 m | (3)
arks) | ## Q16. A sample of strontium ore is known to contain strontium oxide, strontium carbonate and some inert impurities. To determine the mass of strontium carbonate present, a student weighed a sample of the solid ore and then heated it in a crucible for 5 minutes. The sample was allowed to cool and then reweighed. This heating, cooling and reweighing was carried out three times. The results are set out in the table. | Mass of crucible / g | 9.85 | |--|-------| | Mass of crucible and ore sample / g | 16.11 | | Mass of crucible and sample after first heating / g | 14.66 | | Mass of crucible and sample after second heating / g | 14.58 | | Mass of crucible and sample after third heating / g | 14.58 | (a) When strontium carbonate is heated it decomposes according to the following equation. $$SrCO_3 \rightarrow SrO + CO_2$$ | Give a reason why the mass of the solid sample changed during the experiment. | | |---|-----| | | | | | | | | (1) | (b) Use the data in the table to calculate the mass of strontium carbonate in the original ore sample. Give your answer to an appropriate precision. Mass of strontium carbonate = ____ g (5) | Calculate the percentage error in the initial mass of ore used. | |--| | | | | | | | Percentage error = % | | The mass of inert impurities in the sample was 347 mg. | | Deduce the mass of SrO in the sample and justify any assumption made in calculating your answer. | | (If you have been unable to answer part (b) , assume the mass of strontium carbonate was 4.85 g. This is not the correct answer.) | | Mass of SrO = | | | | Strontium metal can be extracted by heating strontium oxide with aluminium metal. In this reaction, strontium vapour and solid aluminium oxide are formed. | | Write an equation for the reaction and state the role of the aluminium in the process. Explain why strontium forms a vapour but aluminium oxide is formed as a solid. | | Equation | | Role of aluminium | | Explanation | | | | | | | | | | (Total | |------------------------------|--|--------------| | | | | | is question is at | out the chemistry of some Group 2 element | ents. | | | ation for the reaction of calcium with wate
sible value for the pH of the solution form | | | Equation | | | | pH | | | |) State the tre
magnesium | nd in solubility, in water, of the Group 2 so
o barium. | ulfates from | | State the tre | d in solubility, in water, of the Group 2 so
b barium. | ulfates from | | Reagent | | | | Explain why the melting point of calcium sulfate is high. | | |---|----| (Total 7 r | ma |