M1.(a) M1 (could be scored by a correct mathematical expression

Correct answer to the calculation gains all of M1, M2 and M3

M1 $\Delta H = \Sigma \Delta H_i$ (products) – $\Sigma \Delta H_i$ (reactants) Credit 1 mark for – 101 (kJ mol⁻¹)

OR a correct cycle of balanced equations

M2 = -1669 - 3(-590) = -1669 + 1770(This also scores M1)

M3 = + 101 (kJ mol⁻¹)

Award 1 mark ONLY for – 101

For other incorrect or incomplete answers, proceed as follows

• check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (**M1** and **M2**)

• If no AE, check for a correct method; this requires either a correct cycle with 3Sr <u>and</u> 2AI OR a clear statement of **M1** which could be in words and scores <u>only M1</u>

M4 - Using powders

Any one from

- To increase collision frequency / collisions in a given time / rate of collisions
- To increase the surface contact / contact between the solids / contact between (exposed) particles

Ignore dividing final answer by 3 Penalise **M4** for reference to molecules.

M5 Major reason for expense of extraction Any one from

- <u>Aluminium is extracted by electrolysis **OR** aluminium extraction uses (large amounts of) <u>electricity</u>
 </u>
- Reaction / process / It / the mixture requires heat
- It is endothermic

(b) Calcium has a higher melting point than strontium, because *Ignore general Group 2 statements.*

Correct reference to size of cations / proximity of electrons

M1 (For Ca) delocalised <u>electrons closer to cations / positive ions / atoms /</u> nucleus

OR cations / positive ions / atoms are smaller

OR cation / positive ion / atom or it has fewer (electron) shells / levels

Penalise **M1** if either of Ca or Sr is said to have <u>more or less</u> delocalised electrons OR the same nuclear charge. Ignore reference to shielding.

Relative strength of metallic bonding M2 (Ca) has <u>stronger</u> attraction between the <u>cations / positive ions / atoms /</u> <u>nucleus</u> and the <u>delocalised electrons</u> *OR* <u>stronger metallic</u> bonding

(assume argument refers to Ca but credit converse argument for Sr)

CE= 0 for reference to molecules or Van der Waals forces or intermolecular forces or covalent bonds.

2

(c) M1 2Mg + $O_2 \longrightarrow 2MgO$

 $M2 Mg + 2H_2O \longrightarrow Mg(OH)_2 + H_2$

Credit multiples of the equations.

M3 Magnesium hydroxide is used as an antacid / relieve indigestion (heartburn) / neutralise (stomach) acidity / laxative Not simply "milk of magnesia" in M3

[10]

3

1

M2. (a) Ca(OH)₂ OR Mg(OH)₂ Ignore name Could be ionic

(b) NaF or sodium fluoride

OR

NaCl or sodium chloride

Either formula or name can score Do not penalise the spelling "fluoride"

When both formula and name are written,

- penalise contradictions
- if the attempt at the correct formula is incorrect, ignore it and credit correct name for the mark unless contradictory
- *if the attempt at the correct name is incorrect, ignore it and credit correct formula* for the mark unless contradictory

(c) NaClO OR NaOCl

Ignore name (even when incorrect) The correct formula must be clearly identified if an equation is written

(d) **Br**₂ (ONLY)

Only the correct formula scores; penalise lower case "b", penalise upper case "R", penalise superscript Ignore name The correct formula must be clearly identified if an equation is written

(e) **M1** S OR S_{8} OR S_{2}

M2 I₂ (ONLY)

Ignore names penalise lower case "i" for iodine, penalise superscripted numbers Mark independently The correct formula must be clearly identified in each case if an equation is written

2

1

1

1

(f) (i) CH₃CH₂CH=CH₂ Structure of but-1-ene. Ignore name Credit "sticks" for C-H bonds (ii) $CH_3CH_2CH_2CH_2OH$

Structure of butan-1-ol. Ignore name Credit "sticks" for C-H bonds

(iii) CH₃CH₂CH₃

Structure of propane. Ignore name Ignore calculations and molecular formula Credit "sticks" for C-H bonds Ignore the molecular ion

(iv) CH₃CH₂Br OR C₂H₅B_r
 Structure of bromoethane.
 Ignore name and structure of nitrile
 Credit "sticks" for C-H bonds

1

1

1

1

M3. (a) (i) $Ba + 2H_2O \longrightarrow Ba(OH)_2 + H_2$ Ignore state symbols Credit multiples and correct ionic equations

> (ii) (Reactivity with water) increase(s) / increasing / increased (down the Group / from Mg to Ba)

> > Accept "greater" or "gets more" or similar words to that effect. Ignore reference to "increase in solubility / gets more soluble"

> > > 1

1

(b) Mg(OH)₂

Accept Mg²⁺(OH⁺)₂ / Mg(HO)₂ Insist on brackets and correct case

- (c) M1 Barium meal / barium swallow / barium enema or (internal) X-ray or to block X-rays
 - M2 <u>BaSO₄ / barium sulfate is insoluble</u> (and therefore not toxic) Accept a correct reference to M1 written in the explanation in M2, unless contradictory For M2 NOT barium ions NOT barium NOT barium meal and NOT "It" Ignore radio-tracing

M4.(a) (i) Increases 1 (ii) Decreases 1 (iii) Increases 1 (b) Calcium has a higher melting point than strontium, because *CE* = 0 for reference to molecules or intermolecular forces or covalent bonds Correct reference to size of cations/proximity of electrons (For Ca) delocalised electron(s) closer to cations / positive ions / nucleus M1 Ignore "Van der Waals forces (between atoms)" but penalise if between "molecules"

OR <u>cations / positive ions / atoms are smaller</u>

[5]

1

2

OR <u>cation / positive ion / atom or it has fewer (electron) shells / levels</u> Ignore general Group 2 statements Answers must be specific

Relative strength of metallic bonding

M2 (For Ca) has <u>stronger</u> attraction between the <u>cations / positive ions / nucleus</u> and the <u>delocalised electron(s)</u> Penalise M1 if Ca or Sr is said to have <u>more or less</u> delocalised electrons

OR

stronger metallic bonding

(assume argument refers to Ca but accept converse argument for Sr) Ignore reference to shielding

2

(c) (i) Sulfuric acid / it contains sulfate ions / SO42-

OR

Do not penalise an <u>additional</u> but incorrect formula for sulfate ion.

<u>Sulfuric acid</u> would form a (white) <u>precipitate</u> If only the formula of the sulfate ion is given, it must be correct

1

1

(ii) Ba²⁺ + SO₄²⁻ → BaSO₄ ONLY
 Ignore state symbols
 No multiples

[7]

M5.(a) As <u>concentration increases</u> the amount of heat given out increases / temperature increases (M1)

Any order. Ignore references to an exothermic reaction.

1

More <u>successful</u> collisions or reactions <u>in a given time</u> **OR** more particles have the activation energy **(M2)**

Allow could be a second / nth order reaction.

(An increase in temperature or more heat given out) increases the rate of a reaction (M3)

(b) The magnesium is coated with an <u>oxide / MgO</u> (M1) Allow magnesium hydroxide.

MgO / the coating / the corrosion product has to be removed before Mg will react

OR Mg and MgO / the coating / the corrosion product react at different rates **OR** Initially MgO / the coating / the corrosion product reacts not Mg **(M2)** *Ignore inert coating.*

1

1

1

1

(c) Any two from:

Any order.

Slower with hot water or faster with steam

The hot water produces $Mg(OH)_2$ / the hydroxide **OR** steam produces MgO / the oxide

(Slow) bubbling with hot water **OR** bright white light / flame / white solid with steam

2 max

 (d) Magnesium sulfate is soluble <u>and</u> calcium sulfate is insoluble / slightly soluble / magnesium sulfate is more soluble / calcium sulfate is less soluble / correct trend in solubility (M1)

> Any order. *M1* requires a comparison of the two solubilities.

Calcium sulfate coats the surface of the calcium (M2)

Coating prevents further contact with / reaction by the acid (M3)

1

M6.(a) (i) <u>Change</u> in <u>concentration</u> (of a substance / reactant / product) in unit <u>time</u> / given <u>time / per (specified) unit of time</u>

This may be written mathematically **OR** may refer to the gradient of a graph of <u>concentration</u> / <u>volume</u> against <u>time</u>

OR

<u>Amount of substance formed / used up</u> in unit time / given <u>time / per</u> (specified) unit of time Ignore additional information including reference to collisions

(ii) At W

M1 (QoL)

The rate / it is zero

M2

The <u>magnesium</u> has all reacted / has been used up Ignore reference to the acid being used up

OR

No more collisions possible between acid and Mg

OR

Reaction is complete / it has stopped

OR

No more hydrogen / product is produced

2

(iii) M1

<u>Twice / double</u> as many <u>particles / hydrogen</u> ions (in a given volume) Penalise reference to (hydrochloric acid) molecules in **M1** Penalise reference to "HCl particles" in **M1** OR

Twice / double as much hydrochloric acid

M2

Twice / double as many effective / successful collisions (in a given time)

OR

<u>Twice / double</u> as many collisions with either <u>sufficient</u> energy to react OR with $E \ge E_a$

OR

double the successful / effective collision frequency

2

1

(b) (i) The activation energy is the <u>minimum energy</u> for a reaction to go / start

OR

Minimum energy for a successful/ effective collision

- (ii) M1 Products lower than reactants on the profile *Mark independently*
 - M2 Activation energy (*E*_a) shown and labelled correctly from reactants to peak of curve *Mark independently*

2

1

- (c) (i) $Ba + 2H_2O \longrightarrow Ba(OH)_2 + H_2$ $Ba + 2H_2O \longrightarrow Ba^{2+} + 2OH^- + H_2$ Allow multiples Ignore state symbols
 - (ii) M1 Ba² + SO₄^{2−} BaSO₄ Ignore state symbols in M1 Not multiples in M1
 - M2 White precipitate / solid

(iii)	M1	Barium meal / barium swallow / barium enema Accept a correct reference to M1 written in the explanation in M2 , unless contradictory
	OR	used in X-rays OR to block X-rays OR X-ray contrast medium OR CT scans
	M2	BaSO₄ / barium sulfate is insoluble (and therefore not toxic) For M2 NOT barium ions NOT barium NOT barium meal and NOT "It" Ignore radio-tracing

M7.Mg²⁺ and Cl⁻

Do not allow names.

[1]

2

2

[13]