M1.(a) (i) d (block) OR D (block)

Ignore transition metals / series.

Do not allow any numbers in the answer.

(ii) Contains positive (metal) ions or protons or nuclei and <u>delocalised / mobile / free / sea of electrons</u>

Ignore atoms.

1

1

Strong attraction between them or strong metallic bonds

Allow 'needs a lot of energy to break / overcome' instead of 'strong'.

If strong attraction between incorrect particles, then CE = 0 / 2.

If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then CE=0.

1

(iii)

OR

M1 is for regular arrangement of atoms / ions (min 6 metal particles).

M2 for + sign in each metal atom / ion.

Allow 2⁺ sign.

2

(iv) <u>Layers / planes / sheets of atoms or ions</u> can slide over one another *QoL*.

1

(b) (i) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ (4s⁶) Only.

1

(ii) NiCl₂.6H₂O + **6** SOCl₂ \longrightarrow NiCl₂ + **6** SO₂ + **12** HCl Allow multiples.

1

NaOH / NH₃ / CaCO₃ / CaO

Allow any name or formula of alkali or base. Allow water.

[9]

1

- **M2.** (a) (i) 1s² 2s² 2p⁶ 3s² 3p¹ (1)

 Allow subscripted electron numbers
 - (ii) p (block) (1)

 Allow upper or lower case 's' and 'p' in (a)(i) and (a)(ii)

2

(b) Lattice of metal / +ve ions/ cations / atoms (1)

Not +ve nuclei/centres

Accept regular array/close packed/tightly packed/uniformly arranged

(Surrounded by) delocalised electrons (1)

Note: Description as a 'giant ionic lattice' = CE

2

- (c) Greater nuclear or ionic charge or more protons (1)
 - Smaller atoms / ions (1)

Accept greater charge density for either M1 or M2

More delocalised electrons / e- in sea of e- / free e- (1)

Stronger attraction between ions and delocalised / free electrons etc. (1)

Max 3

Note: 'intermolecular attraction/ forces' or covalent molecules = CE

Accept stronger 'electrostatic attraction' if phrase prescribed elsewhere

Ignore references to m/z values

If Mg or Na compared to Al, rather than to each other, then: **Max 2**

Treat description that is effectively one for Ionisation Energy as a 'contradiction'

3

(d) (Delocalised) electrons (1)

Move / flow in a given direction (idea of moving non-randomly) or under the influence applied pd QoL mark (1)

Allow 'flow through metal'

Not: 'Carry the charge'; 'along the layers'; 'move through the metal'

2

[9]

M3. (a) enthalpy/energy change/required when an electron is removed/knocked out / displaced/ to form a uni-positive ion

(ignore 'minimum' energy)

1

from a gaseous atom

(could get M2 from a correct equation here) (accept 'Enthalpy/energy change for the process...' followed by an appropriate equation, for both marks) (accept molar definitions)

1

(b) 1s² 2s²2p⁶

(accept capitals and subscripts)

1

(c) 's' block

(not a specific 's' orbital – e.g. 2s)

1

(d) $Mg^+(g) \rightarrow Mg^{2+}(g) + e^- \text{ or }$

$$Mg^{+}(g) + e^{-} \rightarrow Mg^{2+}(g) + 2e^{-} or$$

$$Mg^{+}(g) - e^{-} \rightarrow Mg^{2+}(g)$$

1

(e)	Mg²	ion smaller than Ne atom / Mg²+ e- closer to nucleus (Not 'atomic' radius fo Mg²+) has more protons than Ne / higher nuclear charge or removed from a charged Mg²+ion / neutral neon atom (accept converse arguments) (If used 'It' or Mg/magnesium/Mg³+ etc. & 2 correct reasons,	1	
		allow (1))	1	
(f)	(i)	trend: increases (if 'decreases', CE = 0/3)	1	
		Expl ⁿ : more protons / increased proton number / increased nuclear charge (NOT increased atomic number)		
		same shell / same shielding / smaller size	1	
	(ii)	QoL reference to the e- pair in the 3p sub-level		
		(penalise if wrong shell, e.g. '2p', quoted)	1	
		repulsion between the e-in this e-pair (if not stated, 'e- pair' must be clearly implied) (mark M4 and M5 separately)		
		(так м4 апо м3 зерагасету)	1	[12]

1

(a) Outer electrons are in p orbitals

M4.

	(b)	decreases				
		Number of	f protons increases	1		
		Attracting	outer electrons in the same shell (or similar shielding)	1		
	(c)	Therefore	lecules (S ₈) are larger than phosphorus (P ₄) van der Waals' forces between molecules are stronger	1		
	<i>(</i> 1)		more energy needed to loosen forces between molecules	1		
	(d)	Argon par	ticles are single atoms with electrons closer to nucleus	1		
		Cannot ea	asily be polarised (or electron cloud not easily distorted)	1 [9		
M5.		(a) 37	These answers only. Allow answers in words.	1		
		48	Ignore any sum(s) shown to work out the answers.	1		
	(b)	(i) Elect	ron gun / high speed/high energy electrons Not just electrons. Not highly charged electrons.	1		

Knock out electron(s)

Remove an electron.

1

(ii)
$$Rb(g) \rightarrow Rb^{+}(g) + e^{(-)}$$

OR

$$Rb(g) + e^{-} \rightarrow Rb^{+}(g) + 2e^{-}$$

OR

$$Rb(g)$$
 - $e^{(-)} \rightarrow Rb^{\scriptscriptstyle +}(g)$

Ignore state symbols for electron.

1

(c) Rb is a bigger (atom) / e further from nucleus / electron lost from a higher energy level/ More shielding in Rb / less attraction of nucleus in Rb for outer electron / more shells

Answer should refer to Rb not Rb molecule
If converse stated it must be obvious it refers to Na
Answer should be comparative.

1

(d) (i) s / block s / group s
Only

1

(ii) 1s² 2s² 2p6 3s² 3p6 4s² 3d10 4p6 5s1 Allow 3d10 before 4s² Allow in any order.

1

(e)
$$(85 \times 2.5) + 87 \times 1$$
 3.5
M1 is for top line

1

1

OR

