GCE

Chemistry A

Unit F325: Equilibria, Energetics and Elements
Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation	Meaning of annotation
BDD	Benefit of doubt given
CON	Contradiction
\bigcirc	Incorrect response
ELF	Error carried forward
1	Ignore
NAG	Not answered question
NBCD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
P.E	Rounding error
SF	Error in number of significant figures
\checkmark	Correct response

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions)

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Error carried forward
ECF	Alternative wording
AW	Or reverse argument
ORA	

3. The following questions should be annotated with ALL annotations to show where marks have been awarded in the body of the text: 1(d) 3(b)(i)
3(b)(iv)
4(e)(iii)
5(b)(ii)
7(b)

Question			Answer	Marks	Guidance
1	(a)		(+)5 \checkmark	1	ALLOW 5+ OR V OR Cr ${ }^{\text {5+ }}$
1	(b)		For equations, IGNORE any state symbols; ALLOW multiples Any correct equation for a reaction catalysed by a transition element, compound or ion AND transition element, compound or ion (by formula or name) \checkmark	1	EXAMPLES $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ (allow \rightarrow) AND Fe/iron oxide $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$ (allow \rightarrow) AND $\mathrm{V}_{2} \mathrm{O}_{5} / \mathrm{Pt}$ $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$ AND Pt/Pd/Rh/Au Equation for any alkene $+\mathrm{H}_{2} \rightarrow$ alkane AND Ni/Pt/Pd $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl}$ AND Fe/ $\mathrm{FeCl}_{3} / \mathrm{Fe}^{3+}$ $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$ AND Fe/ $/ \mathrm{FeBr}_{3} / \mathrm{Fe}^{3+}$ $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ AND MnO_{2} For other examples, CHECK with TL
1	(c)	(i)	Donates two electron pairs (to a metal ion) AND forms two coordinate bonds (to a metal ion) NOTE: Metal ion not required as Ni^{3+} is in the question	1	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bonds for coordinate bonds TWO is only needed once, e.g. Donates two electron pairs to form coordinate bonds Donates electron pairs to form two coordinate bonds
1	(c)	(ii)	$\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2} \checkmark$	1	ALLOW in any order IGNORE structure
1	(c)	(iii)	MARK INDEPENDENTLY $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \checkmark$ Each N OR each NH_{2} OR amine group has a lone pair/electron pair OR lone pairs shown on N atoms in structure \checkmark	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$ OR $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{NH}_{2}$ ALLOW secondary or tertiary diamines or mixture IGNORE complex ion For other examples, CHECK with TL

Question		Answer	Marks	Guidance
1	(d)	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Co^{2+} REACTION OF Co^{2+} with $\mathrm{NaOH}(\mathrm{aq})$ Correct balanced equation $\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Co}(\mathrm{OH})_{2}(\mathrm{~s})^{\checkmark}$ state symbols not required Observation blue precipitate/solid	2	FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu^{2+} and some for Co^{2+} ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation $\text { ALLOW }\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Co}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O}$ ALLOW full or 'hybrid' equations, e.g. $\begin{aligned} & \mathrm{Co}^{2+}+2 \mathrm{NaOH} \rightarrow \mathrm{Co}(\mathrm{OH})_{2}+2 \mathrm{Na}^{+} \\ & {\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Co}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}} \\ & \quad{ }_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Co}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \end{aligned}$ AbSOW any shade of blue IGNORE changes in colour over time
1	(d)	REACTION OF Co ${ }^{2+}$ WITH excess $\mathrm{NH}_{3}(\mathrm{aq})$ Correct balanced equation $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$ Observation brown/yellow (solution) \checkmark	2	IGNORE initial precipitation of $\mathrm{Co}(\mathrm{OH})_{2}$ ALLOW any shade of brown or yellow DO NOT ALLOW brown/yellow precipitate for observation
1	(d)	REACTION OF Co ${ }^{2+}$ WITH $\mathrm{HCl}(\mathrm{aq})$ Correct balanced equation $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \longrightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$ Observation blue (solution)	2	IGNORE mention of different concentrations of HCl ALLOW $\mathrm{CoCl}_{4}{ }^{2-}$ i.e. no brackets $\mathrm{OR} \mathrm{Co}(\mathrm{Cl})_{4}{ }^{2-}$ ALLOW $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \longrightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$ IGNORE Co ${ }^{2+}+4 \mathrm{Cl}^{-} \longrightarrow \mathrm{CoCl}_{4}{ }^{2-}$ ALLOW any shades of blue DO NOT ALLOW blue precipitate for observation
		Total	14	

Question		Answer	Marks	Guidance			
2	(a)	NOTE: First 3 marks are ONLY available from an expression using [NO] ${ }^{2}$ Units are marked independently Using values ON THE CURVE in CORRECT expression Use of any two correct values for rate and [NO] from graph e.g. for 5.0×10^{-4} and 4.2×10^{-4}, $k=\frac{4.2 \times 10^{-4}}{\left(2.0 \times 10^{-2}\right) \times\left(5.0 \times 10^{-4}\right)^{2}}$ OR $4.2 \times 10^{-4}=k\left(2.0 \times 10^{-2}\right) \times\left(5.0 \times 10^{-4}\right)^{2}$ Calculation of $\boldsymbol{k} \mathbf{2}$ marks FOR 1 MARK k calculated correctly from values obtained from graph BUT NOT in standard form ANDIOR more than 2 SF $\text { e.g. } k=\frac{6.0 \times 10^{-4}}{\left(2.0 \times 10^{-2}\right) \times\left(6.0 \times 10^{-4}\right)^{2}}=83333.33$ OR FOR 2 MARKS k calculated correctly from values obtained from graph AND in standard form AND TO 2 SF e.g. $k=83333.33$ gives $8.3 \times 10^{4} \checkmark$ UNITS FOR 1 MARK: $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \checkmark$		Note: rate and [NO] are any correct pair of readings from the graph, The [NO] below are the most commonly seen. For these [NO] values, these are the ONLY rates allowed			
				[NO]	rate	k	k
				1.0×10^{-4}	0.1×10^{-4} 0.2×10^{-4} to	50000 100000	$\begin{aligned} & 5.0 \times 10^{4} \\ & 1.0 \times 10^{5} \end{aligned}$
				2.0×10^{-4}	0.6×10^{-4} 0.7×10^{-4}	75000 87500	$\begin{aligned} & 7.5 \times 10^{4} \\ & 8.8 \times 10^{4} \\ & \hline \end{aligned}$
				3.0×10^{-1}	1.5×10^{-4}	83333	8.3×10^{4}
				4.0×10^{-1}	2.7×10^{-4}	84375	8.4×10^{4}
				5.0×10^{-4}	4.2×10^{-4}	84000	8.4×10^{4}
				6.0×10^{-1}	6.0×10^{-4}	83333	8.3×10^{4}
				7.0×10^{-4}	8.2×10^{-4}	83673	8.4×10^{4}
				IF OTHER values are given, mark using the same principle. If any doubt, contact TL. NOTE: IGNORE any numbers used from tangents SPECIAL CASES that ALLOW ECF for calculation of k from ONLY ONE of the following (2 marks) 1. Powers of 10 incorrect or absent in initial k expression 2. $\left[\mathrm{H}_{2}\right]^{2}[\mathrm{NO}]$ used instead of $\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}$ 3. Any value within ± 0.2 of actual values from graph			
			4	ALLOW units in any order, e.g. $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$			

Question			Answer	Marks	Guidance
2	(b)	(i)	 One straight upward line AND starting at 0,0 \checkmark 2nd straight upward line starting at 0,0 and steeper AND Steeper line labelled H OR less steep line labelled L	2	ALLOW 1 mark for two upward sloping curves starting at origin AND upper curve labelled H and lower curve labelled L NOTE: ALLOW some leeway for lines starting from origin ALLOW straight line not drawn with ruler, i.e. is a straight line rather than a curve ALLOW similar labelling as long as it is clear which line is which
2	(b)	(ii)	increases \checkmark	1	
2	(c)		MARK INDEPENDENTLY Downward curve Half life is constant \checkmark	2	ALLOW curve touching y axis ALLOW curve touching x axis ALLOW Two half lives are the same IGNORE 'regular' half life (not necessarily the same)

| Question | | | Marks | Answer | $\mathbf{1}$ |
| :---: | :---: | :---: | :--- | :---: | :---: | :--- |
| $\mathbf{2}$ | (d) | (i) | $\mathrm{H}_{2}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$ | ONLY correct answer
 DO NOT ALLOW multiples | |
| $\mathbf{2}$ | (d) | (ii) | Steps 1 AND Step 2 together give 2NO $+\mathrm{H}_{2} \checkmark$ | ALLOW Step 1 AND Step 2 together give species in same
 ratio as in rate equation
 ALLOW rate-determining step/slow step for Step 2 | |
| ALLOW H_{2} reacts with $\mathrm{N}_{2} \mathrm{O}_{2}$ which is formed from 2NO | | | | | |
| NOTE: The response must link Step 1 with Step 2 | | | | | |
| Steps can be referenced from the species in each step | | | | | |

Question			Answer	Marks	Guidance
3	(a)	(i)	$5 \mathrm{~mol} / \mathrm{molecules} \mathrm{(of} \mathrm{gas)} \mathrm{forms} 3 \mathrm{~mol} / \mathrm{molecules} \mathrm{(of} \mathrm{gas)} \checkmark$	1	ALLOW reaction forms fewer moles/molecules IF stated, numbers of molecules MUST be correct IGNORE comments related to ΔG OR disorder (even if wrong)
3	(a)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=(+) 131\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$, award 2 marks $-164=(186+2 \times 206)-(4 \times S+238)$ OR $4 S=164+(186+2 \times 206)-238 \checkmark$ $S=(+) 131\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark$	2	NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. -164 may be missing ALLOW FOR 1 mark -131 wrong final sign 49 wrong sign for 164 79.5 no use of 2 524 no division by 4 38 wrong sign for 186 -75 wrong sign for 206 250 wrong sign for 238 Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g. 146 for 164

Question			Answer	Marks	Guidance
3	(a)	(iii)	NOTE: DO NOT ALLOW answer to 3(a)(ii) for Δ G calculation ΔG calculation: 2 marks $\begin{aligned} & \Delta G=-234-298 \times-0.164 \\ & =-185\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ IGNORE units (even if wrong) -185 subsumes 1st mark) Feasibility comment for negative ΔG answer: 1 mark (Forward) reaction is feasible / spontaneous $\text { AND } \Delta G<0 / \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}<0 \checkmark$	2	ALLOW ΔG correctly calculated from 3 SF up to calculator value of -185.128 ALLOW working in J, ie: $\begin{aligned} & \Delta G=-234000-298 \times-164 \checkmark \\ & =-185000\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$ ALLOW 1 mark for use of 25 OR mixture of kJ and J, $\text { e.g. } \Delta G=-234-25 \times-0.164=-229.9$ $\Delta G=-234-298 \times-164=+48638$ ALLOW ECF if calculated value for ΔG is + ve Then 'correct' response for 3rd mark would be not feasible/not spontaneous AND $\Delta G>0 / \Delta H-T \Delta S>0$
3	(a)	(iv)	$(\Delta G=)-234-1427 \times \frac{-164}{1000}=0(\text { calculator } 0.028(\mathrm{~kJ}) \text { OR } 28(\mathrm{~J})) \checkmark$ $2^{\text {nd }}$ mark only available if $1^{\text {st }}$ mark has been awarded (Above $1427 \mathrm{~K} / 1154^{\circ} \mathrm{C}$), reaction is not feasible/not spontaneous \checkmark OR 1427 K is maximum temperature that reaction happens	2	ALLOW (When $\Delta G=0$) $T=\frac{-234}{-0.164}=1427 \mathrm{~K} \mathrm{OR} \frac{-234000}{-164}=1427 \mathrm{~K}$ For 2nd mark, IF $\Delta \mathrm{G}$ is + ve from (a)(iii) ALLOW ECF for: Above 1427 K , reaction is feasible / spontaneous OR 1427 K is minimum temperature that reaction happens IGNORE LESS feasible IGNORE comparisons of the signs of $T \Delta S$ and ΔH, e.g IGNORE $T \Delta S$ is more negative than ΔH

Question			Answer	Marks	Guidance
3	(b)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=57.6 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$, award 6 marks IF answer $=57.6$ with incorrect units, award 5 mark Equilibrium amounts in mol 2 MARKS $n\left(\mathrm{SO}_{2}\right)=0.180(\mathrm{~mol}) \quad$ ALL 3 correct: $n\left(\mathrm{O}_{2}\right)=0.090(\mathrm{~mol}) \quad$ ANY 2 correct: $n\left(\mathrm{SO}_{3}\right)=0.820(\mathrm{~mol})$ Equilibrium concentrations (moles $\times 4$) 1 MARK $\begin{aligned} & \mathrm{SO}_{2}=0.720\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \text { AND O} \\ & \text { AND }=0.360\left(\mathrm{~mol} \mathrm{dm}_{3}^{-3}\right) \\ & \text { AN } 3.28\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ Calculation of K_{c} and units 3 MARKS $\begin{aligned} & K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \text { OR } \frac{3.28^{2}}{(0.720)^{2} \times(0.360)} \\ & =57.6 \checkmark \mathrm{dm}^{3} \mathrm{~mol}^{-1} \end{aligned}$ At least 3SF is required	6	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF from incorrect moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ AND SO_{2} ALL three concentrations required for this mark ALLOW ECF from incorrect concentrations NO ECF for numerical value with a square missing For K_{c}, ALLOW 3 significant figures up to calculator value of 57.64746228 correctly rounded For units, ALLOW mol ${ }^{-1} \mathrm{dm}^{3}$ DO NOT ALLOW $\mathrm{dm}^{3} / \mathrm{mol}$ ALLOW ECF from incorrect K_{C} expression for both calculation and units COMMON ERRORS $\begin{aligned} & 0.0294 \quad 3 \text { marks + units mark } \\ & \text { from } \mathrm{SO}_{2}=0.820, \mathrm{O}_{2}=0.410, \mathrm{SO}_{3}=0.180(\mathrm{~mol}) \end{aligned}$
3	(b)	(ii)	(Pressure) decreases AND fewer molecules/moles \checkmark	1	For fewer moles, ALLOW $3 \mathrm{~mol} \rightarrow 2 \mathrm{~mol}$ ALLOW more moles of reactants

Question			Answer	Marks	Guidance
3	(b)	(iii)	ΔH is negative / '- $/$ / -ve AND yield of SO_{3} decreases \checkmark	1	IGNORE exothermic and endothermic
3	(b)	(iv)	IGNORE le Chatelier responses Each marking point is independent K_{c} K_{c} does not change (with pressure/ concentration) \checkmark Comparison of conc terms with more O_{2} $\left[\mathrm{O}_{2}\right]$ /concentration of oxygen is greater OR denominator/bottom of K_{c} expression is greater \checkmark QWC: yield of SO_{3} linked to K_{c} (Yield of) SO_{3} is greater/increases AND numerator/top of K_{c} expression is greater/increases \checkmark	3	FULL ANNOTATIONS NEEDED ALLOW K_{c} only changes with temperature IF $1^{\text {st }}$ marking point has been awarded, IGNORE comments about ' K_{c} decreasing' or ' K_{c} increasing' and assume that this refers to how the ratio subsequently changes. i.e DO NOT CON $1^{\text {st }}$ marking point. IGNORE O_{2} is greater/increases ALLOW (Yield of) SO_{3} is greater/increases AND to reach/restore K_{c} value \checkmark
			Total	19	

Question			Answer	Marks	Guidance
4	(a)		Proton/ H^{+}donor AND Partially dissociates/ionises \checkmark	1	
4	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.7(0), award 2 marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\frac{1.00 \times 10^{-14}}{0.5(00)} \text { OR } 2(.00) \times 10^{-14}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & \mathrm{pH}=-\log 2(.00) \times 10^{-14}=13.7(0) \end{aligned}$	2	For pOH method:, ALLOW pOH $=-\log \left[\mathrm{OH}^{-}\right]=0.3(0) \checkmark$ (calculator 0.301029995) ALLOW pH $=14-0.3=13.7 \checkmark$ ALLOW 13.7 up to calculator value of 13.69897 correctly rounded. ALLOW ECF from incorrect $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ provided that $\mathrm{pH}>7$
4	(c)	(i)	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]} \checkmark$	1	IGNORE $\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]}$ OR $\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$ IGNORE state symbols

Question			Answer	Marks	Guidance
4	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.9(0), award 3 marks $\left[\mathrm{C}{ }_{2} \mathrm{H}_{5} \mathrm{COOH}\right]=0.12(0) \mathrm{mol} \mathrm{dm}^{-3} \checkmark$ $\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]}=\sqrt{1.35 \times 10^{-5} \times 0.12(0)}$ OR $1.27 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ $\mathrm{pH}=-\log 1.27 \times 10^{-3}=2.9(0) \checkmark$ NOTE: The final two marks are ONLY available from attempted use of K_{a} AND [$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$]	3	ALLOW HA for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ and A^{-}for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$ ALLOW ECF from incorrectly calculated $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]$ ALLOW 1.27×10^{-3} to calculator value of $1.272792206 \times$ 10^{-3} correctly rounded ALLOW 2.9(0) $\times 10^{-3}$ to calculator value of 2.895242493 correctly rounded ALLOW use of quadratic equation which gives same answer of 2.90 from $0.120 \mathrm{~mol} \mathrm{dm}^{-3}$ COMMON ERRORS (MUST be to AT LEAST 2 DP unless $2^{\text {nd }}$ decimal place is 0)

Question			Answer	Marks	Guidance
4	(d)	(i)	$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	IGNORE state symbols and use of equilibrium sign FOR $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-} \mathrm{Na}^{+} \mathrm{OR} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{Na}^{+}$ BUT BOTH + and - charges must be shown ALLOW NaC ${ }_{2} \mathrm{H}_{5} \mathrm{COO}$
4	(d)	(ii)	$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ IGNORE state symbols
4	(e)	(i)	$\mathrm{pH}=-\log 1.35 \times 10^{-5}=4.87 \checkmark$	1	ONLY correct answer DO NOT ALLOW 4.9 (Question asks for 2 DP)
4	(e)	(ii)	Added ammonia $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ removes added $\mathrm{NH}_{3} /$ alkali/base $\mathrm{OR} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NH}_{3} / \mathrm{OH}^{-} \rightarrow$ OR $\mathrm{NH}_{3} /$ alkali reacts with/accepts H^{+} OR H ${ }^{+}+\mathrm{NH}_{3} \rightarrow$ OR H ${ }^{+}+\mathrm{OH}^{-} \rightarrow \checkmark$ Equlibrium $\rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$OR Equilibrium \rightarrow right \checkmark	2	ALLOW use of HA/weak acid/acid for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$; ALLOW use of $\mathrm{NH}_{4} \mathrm{OH}$ for NH_{3} ALLOW A ${ }^{-}$for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$ ASSUME that equilibrium applies to that supplied in the question, i.e. IGNORE any other equilibria

Question			Answer	Marks	Guidance
4	(e)	(iii)	CHECK WORKING CAREFULLY AS CORRECT NUMERICAL ANSWER IS POSSIBLE FROM WRONG VALUES ALLOW HA and A^{-}throughout Amount of Mg (1 mark) $n(\mathrm{Mg})=\frac{6.075}{24.3}=0.25(0) \mathrm{mol}$ Moles/concentrations(2 marks) $\begin{aligned} & n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=1.00-(2 \times 0.25) \\ &\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.00+(2 \times 0.25)=1.50(\mathrm{~mol}) \\ &(\mathrm{mol}) \end{aligned}$ [H^{+}] and pH (1 mark) $\begin{aligned} {\left[\mathrm{H}^{+}\right] } & =1.35 \times 10^{-5} \times \frac{0.50}{1.50} \text { OR } 4.5 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ \mathrm{pH} & =-\log 4.5 \times 10^{-6}=5.35 \quad 2 \mathrm{dp} \text { required } \checkmark \end{aligned}$ NOTE: IF there is no prior working, ALLOW 4 MARKS for $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.50}{1.50}$ AND $\mathrm{pH}=5.35$ IF the ONLY response is $\mathrm{pH}=5.35$, award 1 mark ONLY	4	FULL ANNOTATIONS MUST BE USED For $n(M g), 1$ mark ALLOW ECF for ALL marks below from incorrect $n(\mathrm{Mg})$ ECF ONLY available from concentrations that have - subtracted 0.50 OR 0.25 from 1 for $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]$ - added 0.50 OR 0.25 to 1 for $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$ i.e. For moles/concentration 1 mark (1 mark lost) 1. $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.75$ AND $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.25$ 2. $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.50$ AND $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.25$ 3. $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)=0.75$ AND $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=1.50$ ALLOW ECF ONLY for the following giving 1 additional mark and a total of $\mathbf{3}$ marks 1. $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.75}{1.25} \mathrm{pH}=-\log 8.1 \times 10^{-6}=5.09$ 2. $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.50}{1.25} \mathrm{pH}=-\log 5.4 \times 10^{-6}=5.27$ 3. $\left[\mathrm{H}^{+}\right]=1.35 \times 10^{-5} \times \frac{0.75}{1.50} \mathrm{pH}=-\log 6.75 \times 10^{-6}=5.17$
			Award a maximum of 1 mark (for $\boldsymbol{n}(\mathrm{Mg})=0.25 \mathrm{~mol}$) for: pH value from K_{a} square root approach (weak acid pH) pH value from $K_{\mathrm{w}} / 10^{-14}$ approach (strong base pH) ALLOW alternative approach based on Henderson-Hasselbalch equal $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{1.5}{0.5} \mathrm{OR} \mathrm{p} K_{\mathrm{a}}-\log \frac{0.5}{1.5} \quad \mathrm{pH}=4$	tion for $+0.48$	inal 1 mark $=5.35 \checkmark \quad \text { ALLOW }{ }_{-l o g} K_{\mathrm{a}} \text { for } \mathrm{p} K_{\mathrm{a}}$
			Total	16	

Question			Answer	Marks	Guidance
5	(a)	(i)	Mark each marking point independently	4	Correct species AND state symbols required for each marks ALLOW e for e^{-} TAKE CARE: In top left box, e^{-}may be in centre of response and more difficult to see than at end. There is only ONE correct response for each line From the gaps in the cycle, there is NO possibility of any ECF

Question			Answer	Marks	Guidance
5	(a)	(ii)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) $\checkmark \checkmark$ Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only DO NOT ALLOW 2nd mark without 1st mark DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid $\text { IGNORE: } \mathrm{Fe}^{2+}(\mathrm{g})+2 \mathrm{I}^{-}(\mathrm{g}) \longrightarrow \mathrm{Fel}_{2}(\mathrm{~s})$ (Part of cycle) ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ALLOW 1 mark for ΔH_{f} definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions) \checkmark

Question			Answer	Marks	Guidance
5	(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2473 ($\mathrm{kJ} \mathrm{mol}^{-1}$) award 2 marks $(-113)=416+(2 \times+107)+759+1561+(2 \times-295)+\Delta H_{\mathrm{LE}}\left(\mathrm{Fel}_{2}\right)$ OR $\Delta H_{\mathrm{LE}}\left(\mathrm{Fel}_{2}\right)=$ $-113-(416+(2 \times+107)+759+1561+(2 \times-295))$ OR -113-2360 $=-2473 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +461 instead of +416
5	(b)	(i)	$\begin{aligned} & \mathrm{Fe}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} \checkmark \\ & \mathrm{Br}^{-}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} \end{aligned}$	2	ALLOW $4 s$ before $3 d$, ie $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$ ALLOW $1 s^{2}$ written after answer prompt (ie $1 \mathrm{~s}^{2}$ twice) ALLOW upper case D, etc and subscripts, e.g. $4 \mathrm{~S}_{2} 3 \mathrm{D}_{1}$ ALLOW for Fe^{2+} \qquad $.45^{0}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake

Question			Answer	Marks	Guidance
5	(b)	(ii)	With Cl_{2} AND Br_{2} AND I_{2} products are Fe^{2+} (AND halide ion) FeCl_{2} AND FeBr_{2} AND $\mathrm{Fel}_{2} \checkmark$ OR Evidence that two electrode potentials have been compared for at least ONE reaction, \checkmark e.g. $\mathrm{Fe}-0.44$ AND $\mathrm{Cl}_{2}+1.36$ e.g. Iron has more/most negative electrode potential With Cl_{2} AND Br_{2}, products are Fe^{3+} (AND halide ion) FeCl_{3} AND $\mathrm{FeBr}_{3} \checkmark$	3	FULL ANNOTATIONS NEEDED ALLOW products within equations (even if equations are not balanced) IF stated, IGNORE reactants ALLOW response in terms of positive 'cell reactions', $\text { e.g } \mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Cl}^{-} E=(+) 1.80 \mathrm{~V}$ IGNORE comments about reducing and oxidising agents and electrons
5	(c)		BRTH EQUATIONS REQUIRE IONS PROVIDED IN QUESTION Reaction 1: 2 marks 1st mark for ALL CORRECT species e.g.: $\mathrm{Fe}^{2+}+\mathrm{NO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$ 2nd mark for CORRECT balanced equation $3 \mathrm{Fe}^{2+}+\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow 3 \mathrm{Fe}^{3+}+\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ Reaction 2: 1 mark $\left.\left.{ }_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}+\mathrm{H}_{2} \mathrm{O} \quad \checkmark$	3	ALLOW correct multiples throughout ALLOW equilibrium signs in all equations For 1st mark, IGNORE e^{-}present Check carefully for correct charges
			[Fe(H Total	16	

Question			Answer	Marks	Guidance
6	(c)	(ii)	H^{+}reacts with CN^{-}OR HCN forms OR equation: $\mathrm{H}^{+}+\mathrm{CN}^{-} \rightarrow \mathrm{HCN}($ ALLOW \rightleftharpoons) OR CN ${ }^{-}$accepts a proton $/ \mathrm{H}^{+}$ OR equilibrium shifts right AND CN^{-}is removed \checkmark	1	ALLOW Acid reacts with/removes OH^{-}ions (to form HCN) ALLOW CNH (i.e. any order) IGNORE other equilibrium comments
6	(d)	(i)	Fuel reacts with oxygen/oxidant to give electrical energy/voltage \checkmark	1	ALLOW named fuel. e.g. hydrogen/ H_{2}; ethanol; methanol, etc ALLOW fuel cell requires constant supply of fuel AND oxygen/an oxidant OR fuel cell operates continuously as long as a fuel AND oxygen/an oxidant are added IGNORE 'reactants' 'products' and comments about pollution and efficiency
6	(d)	(ii)	ethanol is a liquid OR is less volatile OR ethanol is easier to store/transport/stored more safely OR hydrogen is explosive/more flammable OR ethanol has more public/political acceptance \checkmark	1	Assume that 'it' refers to ethanol ALLOW ORA throughout IGNORE ethanol has a higher boiling point IGNORE H_{2} is a gas IGNORE 'produces no CO_{2} ' OR less pollution IGNORE comments about efficiency IGNORE comments about biomass and renewable
6	(d)	(iii)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	Correct species AND balancing needed ALLOW multiples ALLOW $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ for formula of ethanol IGNORE state symbols
6	(d)	(iv)	$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	Correct species AND balancing needed ALLOW multiples, e.g. $3 \mathrm{O}_{2}+12 \mathrm{H}^{+}+12 \mathrm{e}^{-} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}$ $2+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ ALLOW e (ie no \pm /sigign) ALLOW $\quad \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$ $\mathrm{OR} 3 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{e}^{-} \rightarrow 12 \mathrm{OH}^{-}$ IGNORE state symbols

	esti	Answer	Marks	Guidance
7	(a)	Equations can be in either order $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$ $\mathrm{NaFeO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{NaOH} \checkmark$	2	ALLOW multiples throughout IGNORE state symbols $\text { ALLOW } \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}$ DO NOT ALLOW equations with uncancelled species. $\text { e.g. } \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}$ $\begin{aligned} & \text { ALLOW } 2 \mathrm{NaFeO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH} \\ & \text { OR } \\ & 2+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-} \checkmark \end{aligned}$

2 NaFeO

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

