

Chemistry A

Advanced Subsidiary GCE

Unit F322: Chains, Energy and Resources

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

(Quest	ion	Answer	Mark	Guidance
1	(a)	(i)	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \checkmark$	1	IGNORE state symbols
		(ii)	Bond breaking absorbs energy AND bond forming releases energy ✓	2	ALLOW bond breaking is endothermic AND bond forming is exothermic DO NOT ALLOW bond forming requires energy
			More energy released than absorbed ✓		The second marking point is dependent on the correct identification of the energy changes during bond breaking and bond making ALLOW exothermic change transfers more energy than endothermic change OR bond forming transfers more energy than bond breaking OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants' OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken'
					IGNORE reference to strong and weak bonds IGNORE reference to number of bonds broken or made IGNORE enthalpy of products is less than enthalpy of reactants
	(b)	(i)	(Enthalpy change) when one mole of a substance ✓	2	ALLOW energy released DO NOT ALLOW energy required ALLOW element OR compound OR molecule DO NOT ALLOW one mole of atoms
			is completely combusted OR burns in excess oxygen \checkmark		ALLOW reacts fully with oxygen
		(ii)	Would make carbon dioxide and water instead OR activation energy (too) high OR rate is (too) slow OR do not react together ✓	1	 ALLOW will make other compounds (containing carbon and hydrogen or carbon, oxygen and hydrogen) ALLOW reaction cannot be carried out experimentally IGNORE heat is lost to the surroundings

(Questi	ion	Answer	Mark	Guidance
1	(b)	(iii)	(+)2801 ✓	3	IGNORE sign
			+ (−)394 × 6 + (−)286 × 6 OR (−)4080 ✓		IGNORE sign
			-1279 ✓		 ALLOW full marks for −1279 with no working out ✓✓✓ Unit not needed ALLOW ECF enthalpy change of combustion of carbon dioxide and water – enthalpy of combustion of glucose
					ALLOW for 2 marks: +1279 cycle wrong way around
					OR +151 OR +691 one value not × 6
					OR -6881 OR +6881 wrong sign for 2801 or 4080
					OR +2121 $\checkmark \checkmark$ correct cycle but not × 6
					ALLOW for 1 mark: -151 OR -691 cycle wrong way around and one value not × 6
					OR –2121 cycle wrong way around and not × 6
					OR –3481 OR +3481 ✓ wrong sign and not × 6
					Note: There may be other possibilities
				Total 9	

F322

(Quest	ion	Answer	Mark	Guidance
2	(a)	(i)	$C_nH_{2n+1}OH \checkmark$	1	ALLOW $C_n H_{2n+2} O$
		(ii)	C ₁₃ H ₂₈ O ✓	1	ALLOW C ₁₃ H ₂₇ OH
	(b)		group of atoms OR part of a molecule ✓	2	ALLOW part of an alcohol IGNORE part of a compound
			that give a compound its (characteristic set of) reactions \checkmark		 ALLOW that determines its chemical properties OR that gives the compound its reaction ALLOW that determines its homologous series
	(c)	(i)		3	ANNOTATE ANSWER WITH TICKS AND CROSSES
			Alkanes have van der Waals' intermolecular forces ✓ Alcohols have hydrogen bonds (and van der Waals' forces) ✓		ALLOW reference to specific compounds e.g. comparing methane and methanol vdW force is not sufficient here
			Hydrogen bonds are stronger (than van der Waals' forces) OR ORA \checkmark		Third marking point is dependent on the correct intermolecular forces being described BUT ALLOW hydrogen bonds are stronger than intermolecular forces in alkanes
		(ii)	Methylpropan-1-ol has weaker van der Waals' forces (than butan-1-ol) OR ORA ✓	2	ALLOW methylpropan-1-ol has fewer van der Waals' forces (than butan-1-ol)
			Methylpropan-1-ol has less surface contact (than butan-1-ol) OR ORA OR		IGNORE reference to more surface area / molecules are closer
			Methylpropan-1-ol has more branching (than butan-1-ol) OR ORA \checkmark		ALLOW methylpropan-1-ol is branched and butan-1-ol is not IGNORE 'methylpropan-1-ol is branched' with no comparison

Q	uesti	on	Answer	Mark	Guidance
2	(d)	(i)	$CH_{3}OH + 1\frac{1}{2}O_{2} \rightarrow CO_{2} + 2H_{2}O \checkmark$	2	ALLOW CH ₄ O
			$CH_3OH + O_2 \rightarrow CO + 2H_2O \checkmark$		for incomplete combustion
					ALLOW $CH_3OH + \frac{1}{2}O_2 \rightarrow C + 2H_2O$
					ALLOW 2 $CH_3OH + 1\frac{1}{2}O_2 \rightarrow C + CO + 4H_2O$
					ALLOW correct multiples of these equations
					IGNORE state symbols
		(ii)	insufficient supply of oxygen	1	
			OR limited amount of air		
			OR poorly ventilated ✓		
		(iii)	Feedstock (in manufacture of organic compounds)	1	ALLOW manufacture of a named organic compound that can
			OR manufacture of biodiesel		be made from methanol
			OR manufacture of esters. ✓		ALLOW antifreeze, screenwash
	(e)			2	One mark is for the correct structure of the product
					One mark is for the equation
			CH ₃ CH ₂ CH ₂ COOH ✓		ALLOW CH ₃ CH ₂ CH ₂ CO ₂ H
					DO NOT ALLOW $C_4H_8O_2$, C_3H_7COOH , C_4H_7OOH for the
			BUT		structure mark but ALLOW for the equation mark
			$C_4H_9OH + 2[O] \rightarrow CH_3CH_2CH_2COOH + H_2O ✓ ✓$		Give credit for the correct structure in the equation
					e.g. $C_4H_9OH + 2[O] \rightarrow CH_3CH_2CH_2COOH + H_2O$ scores two
					marks
					but
					$C_4H_9OH + [O] \rightarrow CH_3CH_2CH_2COOH + H_2$ scores one mark $C_4H_{10}O + 2[O] \rightarrow C_4H_8O_2 + H_2O$ scores one mark
					ALLOW one mark for:
					$C_4H_9OH + [O] \rightarrow CH_3CH_2CH_2CHO + H_2O$

Q	uesti	on	Answer	Mark	Guidance
2	(f)	(i)	methylpropan-2-ol OR 2-methylpropan-2-ol \checkmark H H H C H H H H H H H H H H H H H	2	DO NOT ALLOW methylprop-2-ol ALLOW (CH ₃) ₃ COH ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal –HO in the formula ALLOW
		(ii)	н н н н 	1	ALLOW CH ₃ CHOHCH ₂ CH ₃ ALLOW OH ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal –HO in the formula IGNORE an incorrect name
	II		Total	18	

0	Questi	on	Answer	Mark	Guidance
3	(a)	(i)	Reaction in which energy enters the system (from the surroundings) ✓	1	 ALLOW reaction that absorbs energy ALLOW takes energy in (from the surroundings) ALLOW enthalpy of products have higher enthalpy than enthalpy of reactants ALLOW heat instead of energy ALLOW correct reference in terms of bond breaking and bond making IGNORE incorrect reference to bond breaking or bond making
		(ii)	+33 🗸	1	+ sign is not required DO NOT ALLOW –33

F322

Qu	estic	on	Answer	Mark	Guidance
3	(b)	(i)	2NO added for product \checkmark ΔH labelled with product above reactant AND arrow upwards \checkmark E_a labelled correctly AND above products \checkmark enthalpy $N_2(g) + O_2(g)$ $E_a \qquad \Delta H$ $N_2(g) + O_2(g)$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES IGNORE State symbol ALLOW product line above or below reactants line ALLOW (+)66 ALLOW line that has a small gap at the top and bottom IGNORE arrows at both ends of activation energy line The <i>E</i> _a line must go to maximum (or near to the maximum) on the curve ALLOW if the line clearly shows an activation energy and is not an enthalpy change ALLOW line that has a small gap at the top and bottom
		(ii)	Activation energy is the minimum amount of energy needed for the reactants to react ✓	1	ALLOW compounds OR elements OR molecules OR chemicals instead of reactantsALLOW minimum energy needed to start a reaction

June	2011
------	------

Q	uesti	on	Answer	Mark	Guidance
3	(c)	(i)	Rate of forward reaction slows down and rate of backward reaction speeds up \checkmark	2	ALLOW at start rate of forward reaction is fast but rate of backward reaction is slow
			(Until) rate of forward reaction is the same as the rate of the backward reaction \checkmark		DO NOT ALLOW forward reaction is the same as backward reaction
		(ii)		5	ANNOTATE ANSWER WITH TICKS AND CROSSES
			Reaction is faster ✓		
			Increasing pressure mean more particles per unit volume OR increasing pressure gives more crowded particles OR increasing pressure gives more concentrated (particles) ✓		ALLOW particles are closer together DO NOT ALLOW 'area' instead of 'volume'
			So more collisions per second OR higher collision frequency OR collisions more often ✓		ALLOW increased rate of collision OR collisions are more likely OR there is a greater chance of collisions
					'More collisions' or 'more successful collision' are not sufficient
			(Changes of pressure) do not change the (position of) equilibrium \checkmark		DO NOT ALLOW composition of equilibrium is the same (in question)
			Both sides of equation have same number of moles (of gas) \checkmark		ALLOW both sides of equation have same number of molecules (of gas)
		(iii)	Not a closed system ✓	1	ALLOW gases can escape OR gases are continuously entering OR it is an open system
	(d)		has an unpaired electron ✓	1	ALLOW plural: unpaired electrons has a lone electron is not sufficient
	(e)	(i)	$2NO + O_2 \rightarrow 2NO_2 \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols

Q	uesti	on	Answer	Mark	Guidance
3	(e)	(ii)		3	ANNOTATE ANSWER WITH TICKS AND CROSSES
			NO is not consumed OR overall reaction is $O_3 + O \rightarrow 2O_2 \checkmark$		ALLOW $2O_3 \rightarrow 3O_2$ OR It is a chain reaction OR NO is reformed OR mechanism of ozone depletion is changed OR NO made can react with more ozone
			$NO + O_3 \rightarrow NO_2 + O_2 \checkmark$ $NO_2 + O \rightarrow NO + O_2 \checkmark$		IGNORE dots ALLOW NO ₂ + O ₃ \rightarrow NO + 2O ₂
		(iii)	ANY TWO FROM:	2	
			To identify the functional groups (in pollutants) OR to identify the bonds (in pollutants) ✓		ALLOW a named bond IGNORE any specific wavenumber or range of wavenumbers
			Match spectrum to known pollutants OR each pollutant will have a different spectrum ✓		ALLOW match spectrum to database or datasheet
			Idea that you can measure the concentration or abundance of pollutant \checkmark		
			Total	21	

Mark Scheme

C	Questi	ion	Answer	Mark	Guidance
4	(a)		Atom economy = $\frac{\text{sum of (all) } M_r \text{ of desired product(s)}}{\text{sum of (all) } M_r \text{ of (all) products}}$	1	ALLOW sum of (all) Mr of desired product(s) Atom economy = sum of (all) Mr of (all) reactants ALLOW for the numerator: 'sum of' to be crossed out and replaced by 'molecular mass of the desired product(s)' ALLOW for the denominator: 'sum of molecular masses of all products'
	(b)	(i)	Process 5 ✓	1	$\textbf{ALLOW } C_8 H_{18} \rightarrow C_2 H_4 + C_6 H_{14}$
		(ii)	Process 1 ✓	1	ALLOW $CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_3 \rightarrow$ (CH_3) ₂ $CHCH_2CH_2CH_2CH_3$) ₂
		(iii)	Process 2 ✓ water is a waste product ✓	2	ALLOW $CH_3CH_2OH + CH_3COOH \rightarrow CH_3COOCH_2CH_3 + H_2O$ ALLOW it is a condensation reaction ALLOW water is a by-product / water is a non-desirable product ALLOW process 2 has an 83% atom economy IGNORE it forms more than one product / it forms a waste product
	(c)	(i)	Less waste products OR better sustainability OR get 100% atom economy ✓ (Stops) greenhouse gas emitted OR (stops) gas that (may) cause global warming ✓	2	ALLOW no waste products / there is no longer a waste product ALLOW increase atom economy

F322

4 (c) (ii)	 High percentage yield with a simple reason e.g. because the aim is to manufacture ethanol; to reduce waste; increases sustainability ✓ BUT High percentage yield because there is very efficient conversion from reactant to product OR to reduce the waste of starting materials ✓ ✓ 	2	No marks for just percentage yield or for atom economy. Marks are for the quality of the explanation Marks are awarded as follows One mark – a simple reason that is not fully correct whether a choice has been made or not Two marks – a choice must be made and the reason must be correct
	OR High atom economy with a simple reason e.g. because it is cheaper or makes less harmful products; to reduces waste; increases sustainability ✓ BUT High atom economy to reduce the amount of waste products		
	OR less by products OR more desired product ✓✓ Total	9	

Question		on	Answer	Mark	Guidance
5	(a)		Compound of hydrogen and carbon only ✓	1	ALLOW contains hydrogen and carbon only
					DO NOT ALLOW 'it contains hydrogen and carbon'
					DO NOT ALLOW a mixture of hydrogen and carbon only
	(b)		F✓	1	ALLOW cyclobutane
	(c)		C ₅ H ₁₀ O ✓	1	ALLOW any order
					IGNORE structural or displayed formula
	(d)		D and E	1	ALLOW pentanal and pentan(-3-)one
			OR		
			F and G ✓		ALLOW cyclobutane and but(-2-)ene
					Award mark if both pairs are given
	(e)	(i)	Tetrahedral ✓	2	IGNORE incorrect bond angle
			Four (single) bonds (around carbon atom)		If shape is not given, explanation mark can be credited
			OR four (single) bond pairs (around carbon atom)		If shape is incorrect, explanation mark cannot be credited
			OR (carbon) bonded to four groups ✓		
		(ii)	Trigonal planar ✓	1	ALLOW planar triangle
					IGNORE if incorrect bond angle is stated
	(f)	(i)	G✓	1	ALLOW but-2-ene
		(ii)	Non rotating (carbon–carbon) double bond \checkmark	2	
			Each carbon atom of the double bond attached to (two)		
			different groups/atoms ✓		

(Question	Answer	Mark	Guidance
5	(g)	Equation	10	ANNOTATE ANSWER WITH TICKS AND CROSSES X = Br or C/ ALLOW molecular, structural, displayed or skeletal formula in
		$C_{3}H_{7}X + KOH \rightarrow C_{3}H_{7}OH + KX$ OR $C_{3}H_{7}X + OH^{-} \rightarrow C_{3}H_{7}OH + X^{-} \checkmark$		equation ALLOW $C_3H_7X + H_2O \rightarrow C_3H_7OH + HX$ ALLOW equation from the mechanism IGNORE incorrect equations
		Structure of product		ALLOW structural, displayed or skeletal formula of product if seen ONCE in equation, mechanism or drawn out
		CH ₃ CH ₂ CH ₂ OH ✓		If the machine at any avail marks from the machine
		Reaction mechanism		If two mechanism shown award marks from the mechanism that gives the higher mark
		QWC - nucleophilic substitution ✓		$C_{2}H_{5} = C_{5}^{\delta_{+}} = H_{al}^{\delta_{-}}$ H_{bl} $\downarrow \qquad \bullet \overline{O}H$
		dipole shown on C–Hal bond, C^{δ_+} and Hal^{δ} \checkmark		H
		curly arrow from HO ^{$-$} to carbon atom of C–Hal bond \checkmark		C ₂ H₅COH + Hal [−]
		curly arrow from C–Hal bond to the halogen atom \checkmark		H C₂H₅COH + Hal ⁻ H
				The curly arrow must start from the oxygen lone pair or the negative charge on the oxygen of [−] OH ion No need to show lone pair on the oxygen atom

Question	Answer	Mark	Guidance
5 (g)	Type of bond fission QWC - heterolytic ✓ Reasons for the difference in rate of hydrolysis 1-bromopropane reacts faster (than 1-chloropropane) OR B reacts faster (than C) OR C-Br reacts faster ✓ Because the C-Br bond is weaker OR C-Br has a lower bond enthalpy OR C-Br bond is longer ✓		ALLOW S _N 1 mechanism dipole shown on C-Hal bond, $C^{\delta+}$ and $Hal^{\delta-} \checkmark$ curly arrow from C-Hal bond to the halogen atom \checkmark curly arrow from OH ⁻ to correct carbocation \checkmark IGNORE bromine reacts faster than chlorine ALLOW ora ALLOW less energy to break C-Br ALLOW ora
(h)	C-Br is more easy to break \checkmark With H ₂ \checkmark With HBr \checkmark \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare	3	ALLOW ora ALLOW methylcyclohexane ALLOW 1-bromo-1-methylcyclohexane ALLOW 1-bromo-2-methylcyclohexane ALLOW 2-bromo-1-methylcyclohexane
	Total	23	

C	Question		Answer	Mark	Guidance
6	(a)	(i)	But-1-ene \checkmark H C_2H_5 C C H H \checkmark	2	ALLOW displayed formula ALLOW C ₂ H ₅ CH=CH ₂
		(ii)	Poly(ethenol) has (many) O–H group(s) ✓	2	ALLOW poly(ethenol) has hydroxyl group OR hydroxy group OR is an alcohol DO NOT ALLOW hydroxide
	(b)		Poly(ethenol) forms hydrogen bonds with water ✓	4	DO NOT ALLOW 'it forms hydrogen bonds' ANNOTATE ANSWER WITH TICKS AND CROSSES
			CO is a poisonous gas ✓		ALLOW CO reduces amount of oxygen transported in blood Forming carboxyhaemoglobin/binds with haemoglobin is not sufficient
			HCI is acidic/forms acid rain OR corrosive OR HCI will react with metalwork OR HCI will react with marble/limestone buildings ✓		IGNORE HC <i>I</i> is toxic IGNORE references to ozone layer and greenhouse effect
			ANY TWO METHODS FROM: Method 1 Remove HC I by reacting with a base OR remove HC I by use of a gas scrubber \checkmark		Methods 1 to 3 must be linked to a gas
			Method 2 Develop ways of ensuring all CO is oxidised to CO_2 OR ensure complete combustion to avoid making CO \checkmark		IGNORE reference to catalytic converter
			Method 3 Remove CO_2 by CCS \checkmark		ALLOW specific examples of CCS e.g. CO_2 stored as a metal carbonate / CO_2 stored deep under sea / CO_2 stored in rock
			 Method 4 (Use methods to remove the need for incineration such as) separation AND recycling of the plastics/polymers ✓ Method 5 (Use methods to remove the need for incineration such as) developing biodegradable/compostable plastics/polymers ✓ 		ALLOW (Use methods to remove the need for incineration such as) use of plastics/polymers as a feedstock for making other chemicals

PMT

F322

Q	uestion	Answer		Guidance
6	(c)	ANY TWO FROM:	2	
		Idea that all countries contribute towards pollution \checkmark		ALLOW some countries produce more pollution than others.
		Idea that atmospheric pollution (from incineration travels) across borders OR waste plastics travel across borders / waste plastics travel across the sea ✓		
		Cooperation means that scientists can share ideas OR scientists can warn governments of risk OR world-wide legislation can be introduced OR allows monitoring of pollution in different countries OR richer countries can help poorer countries introduce pollution controls ✓		ALLOW reference to protocols
		One country cannot control pollution unless all countries do \checkmark		
	<u> </u>	Total	10	

Question	Answer	Mark	Guidance	
7		7	ANNOTATE ANSWER WITH TICKS AND CROSSES	
			PLEASE ENSURE YOU LOOK AT THE DATA AND SPECTRA ON PAGE 20 IN CASE THEY INCLUDE COMMENTS THAT ARE WORTHY OF CREDIT. MARK THIS PAGE WITH AN OMISSION MARK, ^ , IF BLANK	
			QWC: mark is integrated into the chemistry marks. These marks need to link evidence with an explanation	
	ANY SEVEN FROM:			
	Compound X QWC: X contains C=O because of absorption at 1720 cm ⁻¹ AND contains O–H because of (broad) absorption between 2500 to 3300 cm ⁻¹ \checkmark So X is a carboxylic acid \checkmark		ALLOW X contains C=O and O–H because of absorptions at 1720 cm ⁻¹ and 2500 to 3300 cm ⁻¹ ALLOW X contains carboxylic acid/COOH because of absorption at 1720 cm ⁻¹ and (broad) absorption between 2500 to 3300 cm ⁻¹ $\checkmark \checkmark$	
	Molar ratio (C:H:O) of X is 4.05 : 8.1 : 2.7 OR $\frac{48.65}{12.0}:\frac{8.11}{1.0}:\frac{43.24}{16.0} \checkmark$ (Empirical formula) is C ₃ H ₆ O ₂ \checkmark		ALLOW alternative approach to molecular formula M_r is 74.0 \checkmark 74 x $\frac{48.65}{100}$: 74 x $\frac{8.11}{100}$: 74 x $\frac{43.24}{100}$ = 36 : 6 : 32 \checkmark C ₃ H ₆ O ₂ \checkmark	
	<i>M</i> _r is 74.0 so X is C ₃ H ₆ O ₂ ✓		This mark is for some evidence of using M_r to deduce the molecular or structural formula ALLOW M_r is 74.0 so X is CH ₃ CH ₂ COOH \checkmark DO NOT ALLOW ECF from the empirical formula with the wrong molar ratio	

Question	Answer	Mark	Guidance
7	Compound Y		ANNOTATE ANSWER WITH TICKS AND CROSSES
	QWC Y contains O–H because of absorption between 3100 and 3500 cm ⁻¹ \checkmark		ALLOW Y is an alcohol (or phenol) because of absorption between 3200 and 3550 cm ⁻¹ ALLOW Y contains C–O, C–H and O–H bonds because of absorptions at approximately 1030, 2950 and 3350 cm ⁻¹
	QWC Mass spec of Y has molecular ion, $m/z = 46$ so M_r is 46 \checkmark		ALLOW $m/z = 46$ so M_r is 46 OR mass spectrum has a peak at 46 which is the M_r OR M_r is 46 because of m/z peak shown on the actual spectra $M_r = 46$ on its own is not sufficient m/z = 46 on its own is not sufficient
	Correct identification of one fragment from a m/z value e.g. $m/z = 31$ is CH ₂ OH ⁺ ; $m/z = 29$ is C ₂ H ₅ ⁺ ; $m/z = 15$ is CH ₃ ⁺		ALLOW $m/z = 31$ shows CH ₂ OH (fragment); m/z = 29 shows C ₂ H ₅ (fragment); m/z = 15 is CH ₃ (fragment)
	Identification of compounds	3	Note : an incorrect name CONs a correct structure ALLOW skeletal OR displayed formula throughout
	So X must be CH_3CH_2COOH OR propanoic acid \checkmark		DO NOT ALLOW propanoic acid with wrong structure or incorrect molecular formula
	So Y is ethanol OR C ₂ H ₅ OH OR CH ₃ CH ₂ OH \checkmark		DO NOT ALLOW ethanol with wrong structure or incorrect molecular formula
	Z is $CH_3CH_2COOC_2H_5$ OR ethyl propanoate \checkmark		DO NOT ALLOW ethyl propanoate with wrong structure or incorrect molecular formula
			ALLOW ECF for identification of Z from incorrect X and Y . DO NOT ALLOW this ECF if name and structures of X or Y do not match
	Total	10	

PMT

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

