Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Tuesday 11 June	2019
Afternoon (Time: 1 hour 40 minutes)	Paper Reference WCH05/01
Chemistry Advanced Unit 5: General Principles of Che and Organic Nitrogen Che (including synoptic asses	nemistry
Candidates must have: Scientific calc Data Booklet	ulator Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

P56130A ©2019 Pearson Education Ltd. 1/2/1/1/1/1/

SECTION A

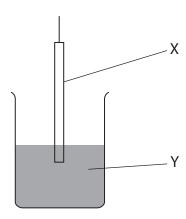
Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

- 1 In which of these ions does the metal have an oxidation number of +2?
 - \triangle A AIO₂
 - \square **B** $[CrCl_2(H_2O)_4]^+$
 - \square **C** $[Fe(CN)_6]^{4-}$
 - \square **D** VO^{2+}

(Total for Question 1 = 1 mark)

2 lodine is manufactured by the reduction of iodate(V) ions, IO_3^- , using hydrogensulfite ions, HSO_3^- . In this reaction, the hydrogensulfite ions are oxidised to sulfate ions, SO_4^{2-} .

By considering the relevant oxidation numbers, the number of moles of hydrogensulfite ions needed to reduce 1 mol of iodate(V) ions is


- **■ B** 1
- **C** 2.5
- □ 5

(Total for Question 2 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

3 An electrode system and a diagram of its half-cell are shown.

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(I)$$

(a) Identify the oxidising agent and X in the half-cell.

(1)

	Oxidising agent	X
⊠ A	MnO ₄	platinum
⊠ B	MnO ₄	manganese
⊠ C	Mn ²⁺	platinum
⋈ D	Mn ²⁺	manganese

(b) As well as water, which components must be present in Y?

(1)

- \square **A** Mn²⁺(aq) and H⁺(aq) only
- B MnO₄(aq) and H⁺(aq) only
- ☑ C MnO₄(aq) and Mn²⁺(aq) only
- \square **D** MnO₄⁻(aq), Mn²⁺(aq) and H⁺(aq) only

(Total for Question 3 = 2 marks)

4 For any reaction, E_{cell}^{Θ} is related to the entropy change and also to the equilibrium constant, K, for that reaction.

 E_{cell}^{Θ} is directly proportional to both

- \triangle **A** ΔS_{system} and K.
- \boxtimes **B** ΔS_{system} and $\ln K$.
- \boxtimes **C** ΔS_{total} and K.
- \boxtimes **D** ΔS_{total} and $\ln K$.

(Total for Question 4 = 1 mark)

- 5 In the ethanol-oxygen fuel cell, the ethanol is
 - **A** oxidised at the anode.
 - **B** oxidised at the cathode.
 - **C** reduced at the anode.
 - **D** reduced at the cathode.

(Total for Question 5 = 1 mark)

- 6 Which element could form a colourless ion with an oxidation number of +4?
 - A Titanium
 - **B** Manganese
 - C Iron
 - Copper

(Total for Question 6 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

7 The conversion of sulfur dioxide to sulfur trioxide is catalysed by vanadium(V) oxide.

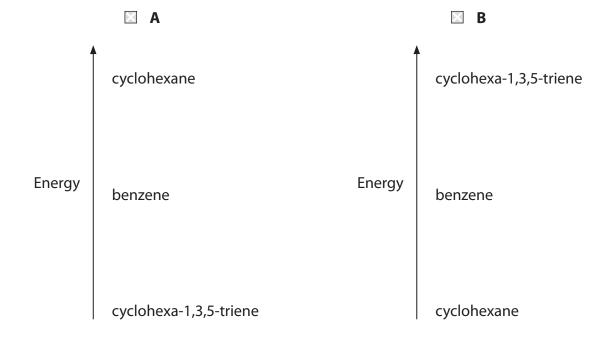
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

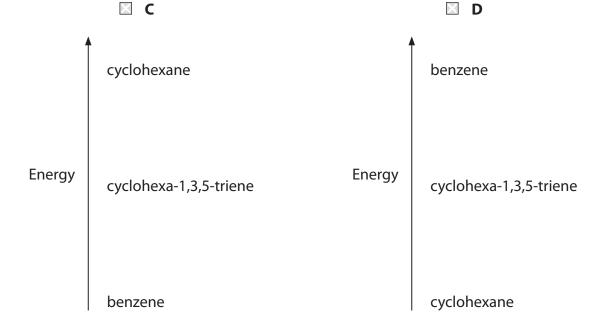
The mechanism of this reaction is most likely to involve the

- A reduction of vanadium(V) to vanadium(IV) by oxygen followed by the oxidation of vanadium(IV) to vanadium(V) by sulfur dioxide.
- **B** reduction of vanadium(V) to vanadium(IV) by sulfur dioxide followed by the oxidation of vanadium(IV) to vanadium(V) by oxygen.
- oxidation of vanadium(V) to vanadium(VI) by oxygen followed by the reduction of vanadium(VI) to vanadium(V) by sulfur dioxide.
- oxidation of vanadium(V) to vanadium(VI) by sulfur dioxide followed by the reduction of vanadium(VI) to vanadium(V) by oxygen.

(Total for Question 7 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.



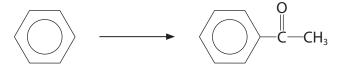

8 Benzene has a delocalised electronic structure that makes it 150 kJ mol⁻¹ more stable than the structure with alternate single and double bonds, which would be called cyclohexa-1,3,5-triene.

The hydrogenation of benzene to cyclohexane has an enthalpy change $\Delta H_{\rm reaction}^{\Theta} = -205 \, {\rm kJ \, mol^{-1}}$

Which energy level diagram represents these energy differences?

The diagrams are not to scale.

(Total for Question 8 = 1 mark)


- **9** An organic compound **R** has the following reactions:
 - R reacts with sodium hydroxide to form an ionic compound
 - **R** decolourises bromine water
 - **R** reacts with ethanol, in the presence of an acid catalyst, to form a sweet-smelling product.

Compound R could be

- \square A $H_2C = CH CH_2 OH$
- □ **B** H₃C—C—OH
- \square **C** H_2C =CH-C-OH

(Total for Question 9 = 1 mark)

10 Benzene reacts under suitable conditions with a compound **S** to form phenylethanone.

Compound **S** is

- **A** ethanal.
- **B** ethanoic acid.
- **C** ethanoyl chloride.
- **D** propanone.

(Total for Question 10 = 1 mark)

11 These four compounds can be used in the preparation of polymers.

E	CH_3 CH_3 CH_2 C CH_2
F	O O
G	H_2N — CH_2 — CH_2 — NH_2
Н	HO—CH ₂ —CH ₂ —CH ₂ —OH

Which monomer or combination of monomers would **not** produce a polymer?

- ⊠ A E
- B F
- C F reacting with G
- D F reacting with H

(Total for Question 11 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

12 Amoxicillin is an antibiotic.

(a) Which of the following functional groups is **not** present in the structure of amoxicillin?

(1)

- A Amine
- B Amide
- C Ketone
- ☑ D Phenol
- (b) Which of these is the most likely structure of amoxicillin at pH = 5?

(1)

(Total for Question 12 = 2 marks)

13 Glycine and alanine are the two simplest amino acids.

(a) Amino acids are crystalline solids at room temperature.

When the solids melt, the main forces broken are

(1)

- A covalent bonds.
- **B** hydrogen bonds.
- C ionic bonds.
- **D** London forces.
- (b) Which of these amino acids could rotate the plane of plane-polarised light?

(1)

- ☑ A Both glycine and alanine
- B Neither glycine nor alanine
- **D** Only alanine
- (c) Glycine and alanine combine to form two possible dipeptides.

What are the structures of these dipeptides?

(1)

- A H₂NCH₂COONHCH(CH₃)COOH and H₂NCH(CH₃)COONHCH₂COOH
- B H₂NCH₂CONHCH(CH₃)COOH and H₂NCH(CH₃)COONHCH₂COOH
- ☑ C H₂NCH₂COONHCH(CH₃)COOH and H₂NCH(CH₃)CONHCH₂COOH
- D H₂NCH₂CONHCH(CH₃)COOH and H₂NCH(CH₃)CONHCH₂COOH

(Total for Question 13 = 3 marks)

14 Propanenitrile (CH₃CH₂CN) may be converted into propanoic acid by reaction with aqueous sodium hydroxide followed by dilute sulfuric acid.

The purpose of the sulfuric acid is to

- **B** protonate the propanoate ion.
- **C** hydrolyse the nitrile.
- **D** neutralise the sodium hydroxide.

(Total for Question 14 = 1 mark)

- 15 In the high resolution proton nmr spectrum of propan-1-ol, CH₃CH₂CH₂OH, there are
 - ☑ A one singlet, two triplets and one sextet.
 - **B** one singlet, two doublets and one triplet.
 - C one singlet, two triplets and one quartet.
 - **D** three triplets and one quartet.

(Total for Question 15 = 1 mark)

16 An organic compound forms a pale yellow precipitate when warmed with iodine and sodium hydroxide.

It also forms a soluble white solid with dilute sulfuric acid.

The structure of the compound could be

$$\square$$
 C NH_2

$$\square$$
 D H_2N

(Total for Question 16 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

17 This question is about chromium and its compounds. Some data are given in the table.

Electrode reaction	E [⇔] /V
$Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s)$	-0.76
$Cr^{3+}(aq) + 3e^- \rightleftharpoons Cr(s)$	-0.74
$Cr^{3+}(aq) + e^- \rightleftharpoons Cr^{2+}(aq)$	-0.41
$O_2(g) + 2H_2O(I) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \Rightarrow 2Cr^{3+}(aq) + 7H_2O(I)$	+1.33

- (a) One of the most important uses of chromium is in plating other metals such as steel and brass. This gives them a hard shiny coating which is very resistant to corrosion.
 - (i) Calculate E_{cell}^{Θ} for the reaction of chromium with oxygen in the presence of water.

Write the equation for this reaction. State symbols are not required.

(3)

(ii) By considering the E_{cell}^{Θ} value calculated in (a)(i), suggest why a chromium coating is corrosion resistant.

(2)

\ T L	and the state of the services and the services are the se	
-	e common oxidation states of chromium are +2, +3 and +6. romium(III) compounds are the most stable.	
(i)	Select a reagent from the table that could be used to convert chromium(III) to chromium(II) in aqueous solution.	
	Justify your answer by calculating the relevant E_{cell}^{Θ} value.	(2)
····		
(11)	When chromium(III) is converted to chromium(II) in aqueous solution, air has to be kept out of the apparatus.	
	Explain why this is necessary.	

(iii) State the colour **change** that you would see when chromium(III) is converted to chromium(II) in aqueous solution.

(1)

(2)

*(iv) Explain why solutions of chromium(II) and chromium(III) have different colour	·s.
	(3)
(c) Chromium(III) forms a very large number of complexes.	
(i) Give the formula and name the shape of the resulting complex when excess	
hydrochloric acid is added to a solution of chromium(III) ions.	(1)
Formula	
Shape	
(ii) Give the formula and name the shape of the resulting complex when excess	
ammonia is added to a solution of chromium(III) ions.	
ammonia is added to a solution of chromium(III) ions.	(1)
ammonia is added to a solution of chromium(III) ions. Formula	(1)

(d) The most common ions in which chromium has the oxidation number +6 are chromate(VI) and dichromate(VI).	
(i) Write an equation showing the conversion of chromate(VI) ions into dichromate(VI) ions. State symbols are not required.	(2)
*(ii) Suggest why the [Cr(H ₂ O) ₆] ⁶⁺ (aq) ion does not exist.	(3)
(iii) If the [Cr(H ₂ O) ₆] ⁶⁺ ion did exist, suggest what colour the solution would be. Justify your answer.	(1)

(e) Potassium dichromate(VI) crystals are very stable so the compound is used to determine the exact concentration of sodium thiosulfate solutions.

Excess potassium iodide and dilute sulfuric acid were added to 10.00 cm³ of a potassium dichromate(VI) solution of concentration 0.0495 mol dm⁻³.

The resulting solution was titrated with sodium thiosulfate solution.

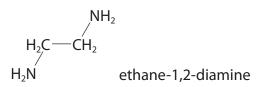
The mean titre was 19.50 cm³.

The equations for the reactions are

$$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6I^-(aq) \rightarrow 2Cr^{3+}(aq) + 3I_2(aq) + 7H_2O(I)$$

 $2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^-(aq)$

(i) Identify the indicator that would be used in this titration and give the colour change at the end-point.


(2)

(ii) Calculate the concentration of the sodium thiosulfate solution.

(4)

(Total for Question 17 = 27 marks)

18 Ethane-1,2-diamine (also called ethylenediamine) is a colourless liquid with a smell similar to ammonia. Ethane-1,2-diamine is used in the production of pharmaceuticals, polymers and agricultural chemicals.

(a) Outline a laboratory synthesis of ethane-1,2-diamine from ethene.

Identify reagents, essential conditions and any intermediate compounds.

(4)

(b)	When nitric acid was added to ethane-1,2-diamine and the resulting solution
	allowed to evaporate to dryness at room temperature, white crystals remained.
	Explain the chemical reaction that occurred and give the structure of the white crystals.

(3)

(c) Eth	ane-1,2-diamine forms a complex with copper(II) ions.	
(i)	Draw a diagram of a complex that copper(II) ions form with ethane-1,2-diamine	
		(1)
*(ii)	When ethane-1,2-diamine is added to an aqueous solution of tetraamminecopper(II) ions, $[Cu(NH_3)_4]^{2+}$, the formation of the ethane-1,2-diamine complex is favoured.	
	Explain why this is so.	(2)

(d) Tetraacetylethylenediamine (TAED) is an important component of laundry detergents that use 'active oxygen' bleaching agents.

TAED is manufactured from ethane-1,2-diamine.

tetra acetyle thylenedia mine

(i) Identify a reagent that could be used to convert ethane-1,2-diamine into TAED.

(1)

(ii) State the number of peaks and relative peak areas present in the **low** resolution proton nmr spectrum of TAED.

Justify your answer by referring to the diagram of the compound.

(3)

(Total for Question 18 = 14 marks)

19 A white solid **M** has the following percentage composition by mass: carbon 72.97%; hydrogen 5.41%; oxygen 21.62%.

The mass spectrum of **M** has a molecular ion peak at m/e = 148.

(a) Calculate the empirical formula of **M** and hence deduce its molecular formula. You **must** show your working.

(4)

(b)	The mass spectrum of M had a significant peak at $m/e = 77$.	
	When M was added to a solution of sodium hydrogencarbonate, vigorous effervescence occurred.	
	M decolourised a cold dilute solution of acidified potassium manganate(VII).	
	(i) Use this information to identify the three functional groups present in M . Justify your answers.	
		(3)
	(ii) Draw three possible structures of M	

(ii) Draw **three** possible structures of **M**.

(3)

(Total for Question 19 = 10 marks)

TOTAL FOR SECTION B = 51 MARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

20

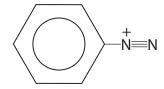
Organic Synthesis

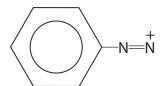
Organic synthesis is the preparation of a specific compound, the 'target molecule'. In some cases the target molecule is a naturally occurring compound, such as penicillin, which needs to be manufactured on a large scale. In other cases, it may be an entirely new compound that theory indicates might have desirable properties. Some of the techniques of organic synthesis are listed.

- Ascent of the homologous series is when a carbon atom is added to a carbon chain.
 This often involves the use of a nitrile group, either nucleophilic substitution of
 halogenoalkanes by a cyanide ion or nucleophilic addition of carbonyl compounds
 by hydrogen cyanide.
- Descent of the homologous series is when a carbon atom is removed from a carbon chain. One method of achieving this is with the iodoform reaction.
- Sometimes a functional group needs to be moved along a carbon chain.
 One way of achieving this is by elimination followed by addition.
- Benzenediazonium ions are important intermediates in aromatic synthesis.
 Their coupling reactions form azo dyes and, unlike other groups attached directly to a benzene ring, they readily undergo nucleophilic substitution reactions.

Organic synthesis is made easier by accurate knowledge of the mechanisms of the reactions involved.

	intermediate compounds formed.	(5)
		(5)
o)	Outline a possible method of converting 1-bromobutane into 2-bromobutane.	
	Give the reagents and essential conditions for each step and identify the intermediate compound formed.	
		(3)


- (c) The benzenediazonium ion is prepared from phenylamine (aniline).
 - (i) State the reagents and conditions for the conversion of phenylamine into benzenediazonium chloride.


(2)

(ii) Two possible structures of the benzenediazonium ion are given.

Use curly arrows and relevant lone pairs to show how **each** of these structures is converted into the other.

(2)

(iii) Benzenediazonium ions react with phenol to form an azo dye.

Draw the structure of the azo dye and name the type and mechanism of the reaction occurring.

(2)

(d) Examples of reactions in which benzenediazonium ions undergo nucleophilic substitution include the formation of iodobenzene and benzenenitrile, with nitrogen gas as the other product.

These reactions are often catalysed by copper(I) ions.

CN

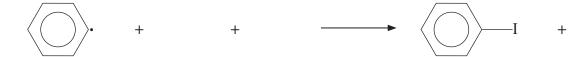
iodobenzene

benzenenitrile

*(i) Suggest why the nucleophilic substitution of groups attached directly to a benzene ring is normally very difficult, and why benzenediazonium ions readily undergo nucleophilic substitution.

(2)

(ii) State why copper(I) ions are likely to show catalytic properties.


(1)

(iii) Complete the mechanism for the nucleophilic substitution of benzenediazonium ions by iodide ions, by adding the missing species. The reaction is catalysed by copper(I) ions. Curly arrows are not required.

(2)

(Total for Question 20 = 19 marks)

TOTAL FOR SECTION C = 19 MARKS TOTAL FOR PAPER = 90 MARKS

BLANK PAGE

lawrencium

mendelevium nobelium

fermium [253] Fm

berkelium californium einsteinium

۲

103

102

101

100

66

86

26

96

95

94

93

6

16

06

uranium

protactinium

Np Pu Am neptunium plutonium americium

[257]

[254]

[256]

[254] Es

[251] Cf

[245] **BK**

[247] £ aurium

[243] 63

[242] 62

[237]

[231] Pa

232 **Th** thorium

61

09 238

65

58

20

69

89

29

99

65

64

4	
Flements	
len	
L	I
of)
d)
0	1
Table	5
Ξ	
Č)
Periodic)
The)
F	

4 5 6 7 0(8)	7 2	(14) (15) (16) (17) 2	N O F N O F N O N O N O N O N O N O N O	0 32.1 3 S orus sulfur cht	74.9 79.0 79.9 8	As Se Br	n germanium arsenic selenium bromine ki 32 33 34 35	118.7 121.8 127.6 126.9 131.3	Sb Te I	50 51 52 53 54	207.2 209.0 [209] [210] [222]	Bi Po At	lead bismuth potonium astatine radon 82 83 84 85 86		Elements with atomic numbers 112-116 have been reported but not fully authenticated	167 169 173 175	Tm Yb		
e		(13)	80 E	27.0 2 AI aluminium sil				114.8	T.	49	204.4	F	thallium 81		ements with ator bu	165			
				(17) (12)	-	Ė	per zinc 9 30	-		7 48		u Hg				163	Ė		
1) (01)						Ni Cu	nickel copper 28 29	106.4 107.9	Pd Ag	46 47	195.1 197.0		platinum gold		Ds Rg damstadtium roentgenium 110 111	157 159			
	6					၀	cobalt 27	102.9	æ	45	192.2	_	indium p	[268]	Mt meitnerium dar 109	152	Eu		
	1.0 H hydrogen			(8)	55.8	Fe	iron 26	1.101	Ru	42 43 44	190.2	os	osmium 76	[777]	HS hassium 108	150	Sm		
				0	54.9	Wn	chromium manganese 24 25	[86]	J.	43	186.2	Re	rhenium 75	-	Bh bohrium 107	[147]	Pm		
		Key	mass ibol	(9)	52.0			6.56	Wo	maybaemum 42	183.8	>	tungsten 74	[566]	Sg seaborgium 106	144	PN		
	12		atomic symbol	(5)	50.9	>	vanadium 23	92.9		41	180.9	Ta	tantalum 73		dubnium 105	141	Pr		
			ato	(4)	47.9	j=	titanium 22	91.2	Zr	40	178.5	Ŧ	hafnium 72	[261]	Rf rutherfordium 104	140	č		
				(3)	45.0	Sc	scandium 21	88.9	>	39	138.9	La*	lanthanum 57	[227]	AC* actinium 89		es		
7		(2)	9.0 Be	24.3 Mg magnesium	40.1	Ca	calcium 20	87.6	Sr	38	137.3	Ba	56 56	[525]	Ra radfum 88		* Lanthanide series		
-		(1)	6.9 Li	Na sodium	39.1	¥	potassium 19	85.5	2	37	132.9	S	55 55	[223]	Fr francium 87		* Lant		

