Write your name here		0.1	
Surname		Other name	s
Pearson Edexcel International Advanced Level	Centre Number		Candidate Number
Chemistry Advanced Unit 4: General Principles Equilibria and Fur (including synoptic	of Chemistry ther Organic	Chemist	es, ry
Tuesday 31 October 2017 –	- Morning		Paper Reference
Time: 1 hour 40 minutes			WCH04/01
Candidates must have: Data B Scient	Booklet ific calculator		Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Show all your working in calculations and include units where appropriate.

Turn over ▶

P50788A

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⋈. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

1 The rate of the reaction between hydrogen and bromine is investigated.

$$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$$

(a) The progress of this reaction may be continuously monitored by measuring the change in

(1)

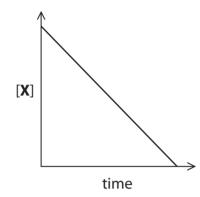
- A volume.
- **B** pressure.
- **D** colour.
- (b) What can be deduced about the rate equation for this reaction from its chemical equation?

(1)

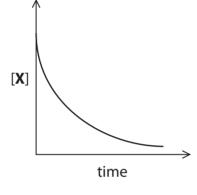
- A It is first order with respect to both hydrogen and bromine.
- **B** It is second order with respect to hydrogen bromide.
- ☐ C It is second order with respect to both hydrogen and bromine.
- **D** Nothing, because the chemical equation gives no information about the mechanism.

(Total for Question 1 = 2 marks)

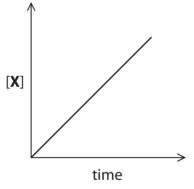
Use this space for any rough working. Anything you write in this space will gain no credit.

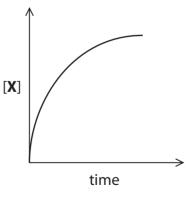

2

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA

2 The decomposition of compound **X** is first order. The correct graph for this is




⊠ B

⊠ C

⊠ D

(Total for Question 2 = 1 mark)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3 For a zero order reaction, the relationship between $[Y]_0$ which is the concentration of Y at the start of any half-life, the rate constant, k, and the half-life, $t_{1/2}$, is

$$[\mathbf{Y}]_0 = 2k\mathbf{t}_{\frac{1}{2}}$$

From this it can be deduced that for a zero order reaction the half-life

- ☑ A increases as the reaction proceeds.
- **B** decreases as the reaction proceeds.
- ☐ C remains constant when the temperature is constant.
- D remains constant under all conditions.

(Total for Question 3 = 1 mark)

- 4 If an endothermic reaction is thermodynamically feasible, it may be deduced that
 - A the activation energy is low.
 - \square **B** $\Delta S_{\text{surroundings}}$ is positive.
 - \square **C** ΔS_{system} is positive.
 - \square **D** ΔS_{total} is negative.

(Total for Question 4 = 1 mark)

5 Calcium carbonate is stable at room temperature but decomposes when heated strongly:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

The best explanation for this is

- \square **A** $\Delta S_{\text{surroundings}}$ becomes less negative as temperature increases.
- \square **B** ΔS_{system} becomes more positive as temperature increases.
- C the entropy of gases is higher than that of solids.
- **D** the entropy of a substance increases with temperature.

(Total for Question 5 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

NOT WRITE IN

WRITE IN THIS AREA

6 At 298 K, butane has a larger standard molar entropy than 2-methylpropane. The explanation for this is that butane has

- ☑ A more ways of distributing energy quanta.
- **B** fewer ways of distributing energy quanta.
- ☑ C a less negative standard molar enthalpy change of formation.
- **D** a higher boiling temperature.

(Total for Question 6 = 1 mark)

7 The cracking of alkanes is carried out at high temperature. The equation for a typical reaction is

$$C_8H_{18}(g) \rightleftharpoons C_4H_{10}(g) + 2C_2H_4(g)$$

When the pressure is increased, the reaction shifts to the

- ☑ A right to re-establish the equilibrium.
- ☑ B left to re-establish the equilibrium.
- ☑ **C** right, and then moves to the left to re-establish the equilibrium.
- **D** left, and then moves to the right to re-establish the equilibrium.

(Total for Question 7 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

8 Water gas is a mixture of carbon monoxide and hydrogen produced by passing steam over white-hot carbon:

$$H_2O(g) + C(s) \rightleftharpoons H_2(g) + CO(g)$$

The equilibrium constant, K_p , for this reaction is given by the expression

- \square **A** $p(H_2) \times p(CO)$
- \square **C** $\frac{p(H_2) \times p(CO)}{p(H_2O)}$

(Total for Question 8 = 1 mark)

- **9** In the Haber process, ammonia is produced on an industrial scale by an exothermic reaction.
 - (a) The equation for the Haber process can be written as

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 or $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightleftharpoons NH_3(g)$

The units of the equilibrium constant, K_c , are

(1)

X	Α

- **В**
- **⊠** C
- D

	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	$\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightleftharpoons NH_3(g)$
A	dm ⁶ mol ⁻²	dm³ mol ⁻¹
3	dm ⁶ mol ⁻²	dm ⁶ mol ⁻²
	mol ² dm ⁻⁶	mol dm ⁻³
)	mol ² dm ⁻⁶	$mol^2 dm^{-6}$

NOT WRITE IN THIS AREA

THIS AREA

(b) The Haber process is carried out at temperatures between 673 K and 773 K. What is the effect of increasing the temperature on the reaction?

(1)

	Rate	Equilibrium yield
⊠ A	increased	increased
⋈ B	increased	decreased
区	decreased	increased
⊠ D	decreased	decreased

(Total for Question 9 = 2 marks)

- 10 The equilibrium constant for a reaction always increases when there is an increase in
 - **A** pressure
 - B temperature
 - \square **C** ΔS_{system}
 - \boxtimes **D** ΔS_{total}

(Total for Question 10 = 1 mark)

11 When concentrated nitric and sulfuric acids are mixed, the reaction is

$$H_2SO_4 + HNO_3 \rightleftharpoons HSO_4^- + H_2NO_3^+$$

In this reaction, the Brønsted-Lowry acids are

- \square **A** H₂SO₄ and HNO₃
- \square **B** H₂SO₄ and H₂NO₃⁺
- \square **C** HNO₃ and H₂NO₃⁺
- D HNO₃ and HSO₄

(Total for Question 11 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

12 Hydrofluoric acid, HF, is a weak acid (p $K_a = 3.2$). What happens when a 1 mol dm⁻³ solution of hydrofluoric acid is diluted with an equal volume of water?

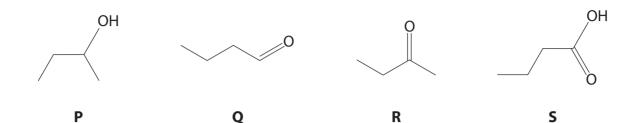
		Percentage of HF molecules dissociated	рН
X	A	decreases	decreases
X	В	decreases	increases
X	C	increases	increases
×	D	increases	decreases

(Total for Question 12 = 1 mark)

13 Two buffer solutions, **M** and **N**, were prepared by mixing 50 cm³ of ethanoic acid and 50 cm³ of sodium ethanoate solutions. In buffer **M**, both components were 2 mol dm⁻³ and in buffer **N**, both components were 1 mol dm⁻³.

The pH values of $\bf M$ and $\bf N$ were compared initially and then 1 mol dm⁻³ hydrochloric acid was added to each until the first change in pH was observed.

	Initial pH	Effect of adding acid
⊠ A	M higher pH	pH of M changed first
	N higher pH	pH of N changed first
	M and N same pH	pH of M changed first
⊠ D	M and N same pH	pH of N changed first


(Total for Question 13 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

14 This question concerns four organic compounds:

(a) The compound which will have the **fewest** peaks in its low resolution proton nmr spectrum is

(1)

- A P
- B Q
- ☑ D S
- (b) The compound which is oxidised by acidified potassium dichromate(VI) **and** reduced by lithium tetrahydridoaluminate(III) is

(1)

- A P
- ⊠ B Q
- \boxtimes D S
- (c) Which two compounds react together to form a new organic compound?

(1)

- A Q and S
- ☑ B R and S
- C P and S
- D Q and R

(Total for Question 14 = 3 marks)

DO NOT WRITE IN THIS AREA

5 Th	ie n	nost energy efficient method of heating a chemical reaction is using
X	A	microwave radiation.
X	В	infrared radiation.
X	C	a Bunsen burner.
X	D	a water bath.
		(Total for Question 15 = 1 mark)
		etic Resonance Imaging (MRI) is widely used in hospitals and clinics for medical
		etic Resonance Imaging (MRI) is widely used in hospitals and clinics for medical osis. The technique uses
		osis. The technique uses
dia	agn	osis. The technique uses
dia	agn A	osis. The technique uses microwaves.
dia ⊠ ⊠	agn A B	osis. The technique uses microwaves. radio waves. ultrasound.
dia	A B C	osis. The technique uses microwaves. radio waves. ultrasound.

DO NOT WRITE IN THIS AREA

WRITE IN THIS AREA

DO NOT

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

17 Hydrogen peroxide decomposes to form water and oxygen in a first order reaction.

$$H_2O_2(aq) \rightarrow H_2O(aq) + \frac{1}{2}O_2(g)$$

The decomposition is slow under normal conditions but occurs rapidly in the presence of a catalyst such as manganese(IV) oxide.

(a) (i) Write the rate equation for the decomposition of hydrogen peroxide.

(1)

(ii) Draw a diagram of an apparatus that could be used to continuously monitor the progress of this reaction. State the measurements that would be made.

(3)

DO NOT WRITE IN THIS AREA

(b) Data obtained in a suitable experiment were used to calculate some results.

[H2O2(aq)] / mol dm-3	Time / s
2.00	0.0
1.50	
1.00	
0.75	
0.50	560
0.25	

(i) Complete the table by inserting as many times as possible. If you think that it is not possible to give a time without using the value of the rate constant, put a cross (X) in the box.

(2)

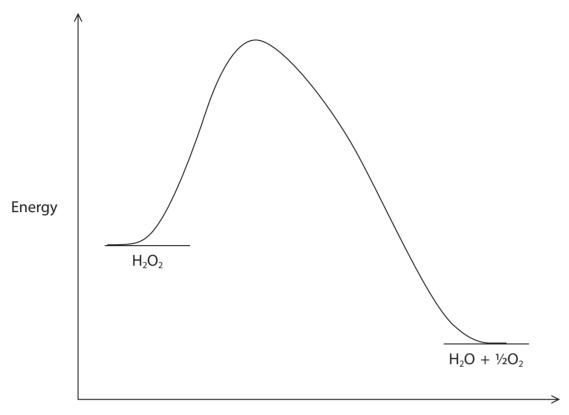
(ii) Explain how the data in the completed table can be used to obtain the rate of the reaction at a particular concentration. No calculation is required.

(2)

(iii) When the concentration of hydrogen peroxide was 0.75 mol dm $^{-3}$, the rate of reaction was 1.9×10^{-3} mol dm $^{-3}$ s $^{-1}$.

Calculate the rate constant for the reaction. Include units with your answer.

(2)



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) The diagram below shows the reaction profile for the decomposition of hydrogen peroxide without a catalyst. On the diagram draw the reaction profile for the catalysed reaction, which involves an intermediate.

(2)

Progress of reaction

(Total for Question 17 = 12 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

18 The contact process for the manufacture of sulfuric acid involves the oxidation of sulfur dioxide:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H_{298}^{\Theta} = -196 \text{ kJ mol}^{-1}$

This reaction is usually carried out at 2 atm and 450°C.

(a) Give the expression for the equilibrium constant, K_p , for this equilibrium.

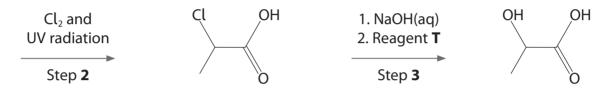
(1)

- (b) A mixture containing 0.500 mol of sulfur dioxide, 0.100 mol of oxygen and 0.750 mol of sulfur trioxide is placed in a vessel at 2 atm and 500°C. At this temperature $K_p = 2.50 \times 10^{10} \, \text{atm}^{-1}$.
 - (i) Show by calculation that this system is **not** at equilibrium.

(3)

DO NOT WRITE IN THIS AREA

(ii) Explain, using your answer to (b)(i), the direction that the system would move to reach equilibrium.	(2)
(iii) Explain, in terms of the entropy changes involved, why the equilibrium shifts to the right when the temperature is reduced from 500 °C to 450 °C. No calculation is required.	(2)
(c) Suggest two reasons why the contact process equilibrium is operated at just 2 atm although equilibrium yield increases at higher pressure.	(2)
(Total for Question 18 = 10 ma	nrks)



DO NOT WRITE IN THIS AREA

19 Lactic acid (2-hydroxypropanoic acid) can be synthesised from propan-1-ol in the following sequence.

propan-1-ol

2-chloropropanoic acid

lactic acid

(a) (i) **Name** the reagents and state the conditions required for Step **1**.

(2)

(iii) Suggest why Step 2 is likely to give a low yield of 2-chloropropanoic acid.

(1)

DO NOT WRITE IN THIS AREA

(iv) Identify reagent T in Step 3 and explain why it is needed.	(2)
b) The reaction of 2-chloropropanoic acid with NaOH(aq) in Step $\bf 3$ is a nucleophilic substitution which occurs by a mixture of $S_N 1$ and $S_N 2$ mechanisms.	
(i) Give the $S_N 2$ mechanism for this reaction, showing the relevant curly arrows and lone pairs.	
and tone pans.	(4)

DO NOT WRITE IN THIS AREA

(ii) Some halogenoalkanes react with alkali entirely by an S _N 1 mechanism while others react entirely by an S _N 2 mechanism. Give the rate equations for these two mechanisms, using RCI for the haloge Explain why the rate equations are different. You are not required to draw any further mechanisms.	
You are not required to draw any further mechanisms.	(3)
(c) 2-chloropropanoic acid and lactic acid both exist as optical isomers.	
(i) State the property associated with optical isomerism.	(4)
	(1)
(ii) State the structural relationship between a pair of optical isomers, and use	
a labelled diagram to identify the structural feature that results in optical	
isomerism in one of these compounds.	(2)
	(-)

DO NOT WRITE IN THIS AREA

ll be similar
ion 19 = 22 marks)

DO NOT WRITE IN THIS AREA

20	An aliphatic compound Z with five carbon atoms, gave an orange precipitate with 2,4-dinitrophenylhydrazine but no reaction when warmed with ammoniacal silver nitral in the mass spectrum of Z the molecular ion peak was at $m/e = 86$.	ate.
	Draw the three possible structures of Z . Explain your reasoning.	
		(6)
	(Tatal for Occasion 20 Commi	(c)
_	(Total for Question 20 = 6 mark	(5)
_	TOTAL FOR SECTION B = 50 MAR	KC
	IOTAL FOR SECTION B = 30 MAR	1/2

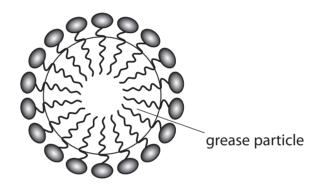
NOT WRITE IN THIS AREA

WRITE IN THIS AREA

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

21 Soaps and Detergents


Soaps and detergents are cleaning agents. Soaps are usually the sodium salt of a carboxylic acid with a very long carbon chain; they are made by treating naturally occurring fats and oils with sodium hydroxide. Sodium stearate, $C_{17}H_{35}COO^-Na^+$, is a typical soap. The use of soaps was first recorded 4500 years ago, but detergents were developed in Germany around 1916 when there was a shortage of the raw materials required for manufacturing soap. Modern detergents are manufactured from petrochemicals. The alkylbenzene sulfonate $C_{18}H_{29}SO_3^-Na^+$ is a typical modern detergent.

Soaps and detergents clean because the long hydrocarbon chain is lipophilic ('fat-attracting') and the ionic end of the structure is hydrophilic ('water-attracting'). A fat or grease particle, which contains a long chain of carbon atoms, binds to the hydrocarbon chains of soap or detergent forming a tiny sphere, the surface of which is covered with hydrophilic groups making it water soluble. These spheres are called micelles.

lipophilic chain

hydrophilic group

soap or detergent

micelle

to a grease particle.	(3)
(b) Identify the interaction between the hydrophilic part of the stearate ion and	
water. Draw a diagram to illustrate your answer.	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Data: $pK_a = 4.89$; solubility in water = 0.34 g dm⁻³ at 25 °C

(i) Explain why stearic acid is only slightly soluble in water whereas ethanoic acid is fully miscible in water. A detailed description of the forces involved is **not** required.

(2)

(ii) Write the equation for the dissociation of stearic acid, $C_{17}H_{35}COOH$, in aqueous solution. Include state symbols.

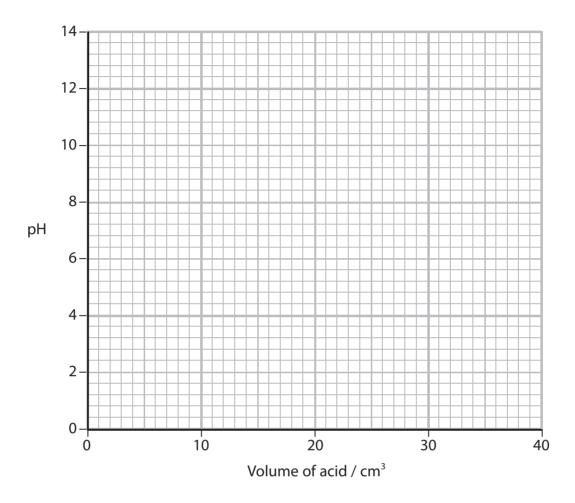
(1)

(iii) Write the expression for K_a for stearic acid.

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

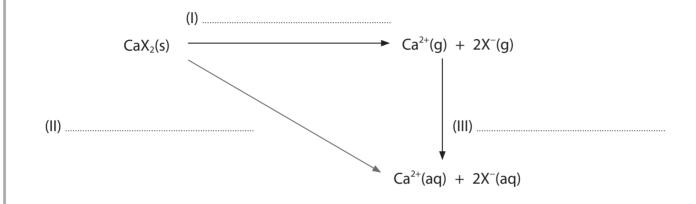

(iv) Calculate the concentration of a saturated solution of stearic acid at 25 $^{\circ}$ C and hence calculate its pH.

(4)

DO NOT WRITE IN THIS AREA

(v) On the axes below, sketch the curve that you would expect when a saturated solution of stearic acid is added to $25\,\mathrm{cm^3}$ of sodium hydroxide of the **same** molar concentration. Use $K_{\rm w}=1.0\times10^{-14}\,\mathrm{mol^2\,dm^{-6}}$ to calculate the pH of the sodium hydroxide solution.

(3)


DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

*(d) One of the main advantages of detergents over soaps is that the calcium salts of alkylbenzene sulfonates are much more soluble in water than calcium stearate. When soaps are used in 'hard' water, which contains calcium ions, calcium stearate precipitates out as an insoluble 'scum'.

Complete the energy cycle below by inserting the names or symbols of the three energy changes, and then use the cycle to explain why calcium stearate is much less soluble than the calcium salt of an alkylbenzene sulfonate. No calculation is required.

(4)

(Total for Question 21 = 20 marks)

TOTAL FOR SECTION C = 20 MARKS
TOTAL FOR PAPER = 90 MARKS

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

The Periodic Table of Elements

														_		
0 (8)	(18) 4.0 He hetium 2	20.2 Ne	39.9	Ar argon 18	83.8	궃	krypton 36	131.3	Xe	54	[222]	R	radon 86		ted	
7	(17)	19.0 F fluorine 9	35.5	Cl chlorine 17	79.9	Br	bromine 35	126.9	I	53	[210]	Αt	astatine 85		een repor	
9	(16)	16.0 O oxygen	32.1	Sulfur 16	79.0	Se	selenium 34	127.6	ا ا	52	[506]	8	polonium 84		116 have b	ticated
2	(15)	14.0 N	31.0	P phosphorus 15	74.9	As	arsenic 33	121.8	Sb	51 51	209.0	Bi	bismuth 83		-112-	but not fully authenticated
4	(14)	12.0 C carbon	28.1		72.6	g	germanium 32	118.7	Sn		207.2	Ъ	lead 82		Elements with atomic numbers 112-116 have been reported	but not fu
ĸ	(13)	10.8 B boron	27.0	Al aluminium 13	69.7	Ga	gallium g	114.8	In E	49	204.4	F	thallium 81		ents with a	
	'		-	(12)	65.4	Zu	zinc 30	112.4	S G		200.6	Εğ	mercury 80		Elem	
				(11)	63.5	ŋ	copper 29	107.9	Ag gg	47	197.0	PΠ	gold 79	[272]	Rg	centgenium 111
				(10)	58.7	ï	nickel 28	106.4	Pq	46	195.1	చ	platinum 78	[271]	Ds	darmstadtium r 110
				6)	58.9	ဝ	cobalt 27	102.9	8		192.2	ı	iridium 77	[368]		meitnerium d
	1.0 H hydrogen 1			(8)	55.8	Pe		101.1	Ru	44	190.2	S	osmium 76	[277]		hassium n
				6	54.9	Wn	manganese 25	[86]	lb Mo Tc	43	186.2	Re	rhenium 75	[264]	ВР	bohrium 107
		nass I ol]	(9)	52.0	ڻ	chromium r	95.9	Wo	42	183.8	>	tungsten 74	[597]	Sg	seaborgium 106
	Key	relative atomic mass atomic symbol name		(5)	50.9	>	vanadium 23	92.9	QN	41	180.9	<u>T</u> a	tantalum 73			dubnium s
		relativ ator		(4)	47.9		titanium 22	91.2	8		178.5		hafnium 72	[261]		rutherfordium 104
				(3)	45.0	Sc	scandium 21	88.9		39	138.9	La*	anthanum 57	[227]		actinium r 89
2	(2)	9.0 Be beryllium	24.3	Mg magnesium 12	40.1	Ca	calcium 20	87.6	Sr	38	137.3		barium la	[526]		radium 88
-	(1)	6.9 Li lithium	23.0	_		¥	potassium 19	85.5	S. S.	37	132.9	S	caesium 55	[223]	Ŀ,	francium 87
			_	_	_	_	_	_	_	_		_	_	_	_	

* Lanthanide series

* Actinide series

١									ı				
	141	144	[147]	150	152	157	159	163	165	167	169	173	175
G	Ą	PN	Pm	Sm	Eu	В	P	ک	운	Д	E	Ϋ́	ב
Ε	praseodymium	neodymium	promethium	samarinm	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	3
28	59	60	61	62	63	64	65	99		68	69	70	
	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[526]	[254]	[257]
ᆮ	Pa	-	S	Pu	Αm	£	쓙	ᠸ	ES	F	PΨ	ž	۲
Ę	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
_	91	92	93	94	95	96	26	86	66	9	101	102	103