| Please check the examination de | tails below | before enteri | ng your candidate information | |--|-------------|---------------|-------------------------------| | Candidate surname | | | Other names | | Pearson Edexcel | Centre | e Number | Candidate Number | | Tuesday 4 Ju | ne 2 | 2019 | | | Afternoon (Time: 1 hour 40 min | utes) | Paper Ref | erence WCH04/01 | | Chemistry Advanced Unit 4: General Principles Equilibria and Fur | | | | | (including synopt | | | icinisti y | ### Instructions - Use **black** ink or **black** ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ### Information - The total mark for this paper is 90. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions. - A Periodic Table is printed on the back cover of this paper. ## **Advice** - Read each question carefully before you start to answer it. - Show all your working in calculations and give units where appropriate. - Check your answers if you have time at the end. Turn over ▶ ### **SECTION A** Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⋈. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈. 1 The rate equation for the reaction of a bromoalkane, RBr, with hydroxide ions is rate = k[RBr] The bromoalkane that is hydrolysed according to this rate equation is **most** likely to be - **A** 1-bromohexane. - ☑ B 1-bromo-2-methylpentane. - **D** 2-bromo-3-methylpentane. (Total for Question 1 = 1 mark) - **2** Which method is most suitable for comparing the rate of hydrolysis of a primary iodoalkane and a tertiary iodoalkane in aqueous silver nitrate? - ☑ A Measuring the increase in pH. - **B** Measuring the change in mass. - C Measuring the time to form a precipitate. - ☐ **D** Taking samples followed by titrating with sodium thiosulfate. (Total for Question 2 = 1 mark) 3 The chemical equation and the rate equation for the reaction of iodine with excess propanone in the presence of an acid catalyst are shown. $$I_2 + CH_3COCH_3 \rightarrow CH_3COCH_2I + HI$$ rate = $k[CH_3COCH_3][H^+]$ Which of the following sketch graphs is correct for this reaction? (Total for Question 3 = 1 mark) 4 The Arrhenius equation is $$\ln k = -\frac{E_a}{R} \times \frac{1}{T} + \text{constant}$$ The activation energy, $E_{\rm a}$, is determined from the gradient of the graph shown. The axes on the graph are | | | x axis | y axis | |---|---|----------------|----------------| | × | A | In <i>k</i> | $\frac{1}{T}$ | | × | В | ln <i>k</i> | $-\frac{1}{T}$ | | × | C | $\frac{1}{T}$ | In <i>k</i> | | X | D | $-\frac{1}{T}$ | In <i>k</i> | (Total for Question 4 = 1 mark) 5 What are the signs of the entropy changes at 273 K when water freezes? $$H_2O(I) \rightarrow H_2O(s)$$ | | | $\Delta \mathcal{S}_{system}$ | $\Delta \mathcal{S}_{ ext{surroundings}}$ | |---|---|-------------------------------|---| | X | A | negative | positive | | X | В | positive | negative | | X | C | negative | negative | | X | D | positive | positive | (Total for Question 5 = 1 mark) **6** Which are the Brønsted-Lowry acids in the following equilibrium? $$CH_3COOH + C_2H_5COOH \rightleftharpoons CH_3COO^- + C_2H_5COOH_2^+$$ - A CH₃COOH and C₂H₅COOH - ☑ B CH₃COOH and C₂H₅COOH₂ - \square **D** CH₃COO⁻ and C₂H₅COOH₂⁺ (Total for Question 6 = 1 mark) 7 In a titration of hydrochloric acid with aqueous ammonia, which indicator would be **most** suitable to detect the end-point? Refer to your Data Booklet. - **A** Azolitmin (litmus) - Bromocresol purple - ☑ C Phenolphthalein - ☑ D Alizarin yellow R (Total for Question 7 = 1 mark) **8** A solution of hydrochloric acid has pH = 2. The solution is diluted to one tenth of its original concentration. What is the pH of the diluted solution? - **B** 1.0 - **C** 2.7 - **D** 3.0 (Total for Question 8 = 1 mark) **9** Equal amounts of three compounds were placed in separate beakers and the same volume of water was added to each. Compound 1 CH₃COOH Compound 2 CH₃COCI Compound 3 CH₃COONa Which shows the order of **increasing** pH in the mixtures? - A CH₃COOH < CH₃COCI < CH₃COONa - ☑ C CH₃COONa < CH₃COOH < CH₃COCI </p> - ☑ D CH₃COCI < CH₃COONa < CH₃COOH </p> (Total for Question 9 = 1 mark) **10** What are the units of K_c for the following equilibrium? $$Cu(s) + 2Ag^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + 2Ag(s)$$ - A moldm⁻³ - \square **B** dm³ mol⁻¹ - C mol² dm⁻⁶ - **D** no units (Total for Question 10 = 1 mark) **11** The graph shows the percentage yield of a product in a gaseous equilibrium under different conditions. The forward reaction in the equilibrium is - ☑ A exothermic with the number of moles of gas decreasing. - **B** exothermic with the number of moles of gas increasing. - C endothermic with the number of moles of gas decreasing. - **D** endothermic with the number of moles of gas increasing. (Total for Question 11 = 1 mark) - **12** Which is the correct expression for $R \ln K$? - \square **A** $R \ln K = \Delta S_{\text{system}} \Delta H/T$ - \blacksquare **B** $R \ln K = \Delta S_{\text{system}} + \Delta H/T$ - \square **C** $R \ln K = \Delta S_{\text{system}} T \Delta H$ - \square **D** $R \ln K = \Delta S_{\text{system}} + T \Delta H$ (Total for Question 12 = 1 mark) - **13** Which compound is **most** soluble in water? - \triangle **A** C_4H_9CI - \boxtimes **B** C_4H_9Br - ☑ D CH₃COOC₂H₅ (Total for Question 13 = 1 mark) - **14** Which compound reacts with phosphorus(V) chloride to form ethanoyl chloride? - A CH₃CHO - B CH₃CH₂OH - ☑ D CH₃COOH (Total for Question 14 = 1 mark) **15** Which two compounds react together to make the compound shown? - A Ethanoyl chloride and ethylamine - **B** Ethanoyl chloride and propylamine - C Propanoyl chloride and ethylamine - **D** Propanoyl chloride and propylamine (Total for Question 15 = 1 mark) **16** The repeat unit of a polymer is shown. Which monomers react to make this polymer? - A HOOC(CH₂)₂COOH and CI(CH₂)₂CI - B CIOC(CH₂)₂COCI and HO(CH₂)₂OH - D HOOC(CH₂)₂COOCH₃ and CIOC(CH₂)₂COCI (Total for Question 16 = 1 mark) 17 The retention time in gas chromatography is the time it takes for a compound to pass through the chromatography column. A column is packed with a stationary phase that is polar. Which of the following will have the **longest** retention time in the column? - **A** hexane - B hex-1-ene - **C** pentane - **D** pentan-1-ol (Total for Question 17 = 1 mark) **18** A compound has the structure $$CH_3(CH_2)_4CH_2$$ $CH_2(CH_2)_6CH_2OH$ $C=C$ The systematic name of the compound is - B Z-hexadec-7-en-1-ol - C E-hexadec-9-en-1-ol - □ Z-hexadec-9-en-1-ol (Total for Question 18 = 1 mark) 19 Fats, such as the one shown, can be converted into fuels for biodiesel by transesterification. Which compound is used as a fuel, following the transesterification of this fat with methanol? - A C₁₇H₃₃COOCH₃ - $oxed{\mathbb{B}}$ \mathbf{B} $C_{17}H_{33}COOH$ - CHOOCCH₃ CHOOCCH₃ CH₂OOCCH₃ - CHOH CH2OH (Total for Question 19 = 1 mark) 20 The type of radiation used in nmr spectroscopy is - **A** infrared. - **B** microwave. - **C** radio waves. - **D** ultraviolet. (Total for Question 20 = 1 mark) **TOTAL FOR SECTION A = 20 MARKS** # **BLANK PAGE** ### **SECTION B** # Answer ALL the questions. Write your answers in the spaces provided. - **21** When nitrogen(II) oxide, NO, reacts with hydrogen at high temperatures, the products are nitrogen and water. - (a) Write an equation for this reaction. State symbols are not required. (1) (b) The table shows the results of a series of experiments to measure the rate of this reaction. | Experiment | Initial concentration / mol dm ⁻³ | | Initial rate / mol dm ⁻³ s ⁻¹ | |------------|--|----------------------|---| | number | [NO(g)] | [H ₂ (g)] | initial rate / morum 3 | | 1 | 0.0020 | 0.020 | 5.5×10^{-3} | | 2 | 0.0040 | 0.040 | 4.4×10^{-2} | | 3 | 0.0080 | 0.020 | 8.8×10^{-2} | (i) Deduce the order of reaction with respect to nitrogen(II) oxide and to hydrogen. Justify your answers by referring to data from the table. | | | - | |-----|---|---| | - 1 | 1 | 2 | | - 1 | | a | | Order with respect to NO | |--------------------------------------| | Order with respect to H ₂ | | Justification | | | | | | | | | | | | | | | | (ii) Write the rate equation for the reaction. | (1) | |---|-------| | (iii) Calculate the value of the rate constant and give its units. | (2) | | (c) There is more than one step in the reaction mechanism.(i) Suggest why the reaction is unlikely to take place in a single step. | (1) | | (ii) The first step of a three-step reaction mechanism is shown. | | | $2NO(g) \rightarrow N_2O_2(g)$ | | | The second step of the mechanism is the rate determining step. | | | Suggest an equation for the rate determining step. | | | Justify your suggestion. | (2) | | | | | | | | | | | (Total for Question 21 = 10 m | arks) | - **22** Propanoic acid is a weak acid with $K_a = 1.30 \times 10^{-5} \, \text{mol dm}^{-3}$. - (a) (i) Write the expression for the acid dissociation constant, K_a , of propanoic acid. (1) (ii) Calculate the pH of a solution of propanoic acid with a concentration of $0.120\,\mathrm{mol\,dm}^{-3}$. (3) (b) 25.00 cm³ of propanoic acid, with a concentration of 0.120 mol dm⁻³, was pipetted into a conical flask. This solution was titrated with sodium hydroxide of concentration 0.150 mol dm⁻³. $$CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COONa + H_2O$$ (i) Use the value of K_a to calculate the pH of the mixture in the flask when enough sodium hydroxide has been added to react with **half** of the acid. (2) | Explain the reason for t | his gradual change in pl | Н. | | |---|------------------------------------|-------------------------|------------| | | - • | | (3) | (iii) Calculate the minimum all of the propanoic aci | | oxide required to reac | t with (2) | (iv) Calculate the pH when | 40 cm ³ of sodium hydro | xide (an excess) was ac | lded. | | • | , | | (3) | - (c) In another titration, a solution of aqueous ammonia with a concentration of 0.120 mol dm⁻³ was added to 25.00 cm³ propanoic acid with a concentration of $0.120 \, \text{mol dm}^{-3}$. - (i) Sketch the shape of the titration curve on the grid. (2) volume of ammonia / cm³ (ii) Explain why an indicator **cannot** be used to determine the end-point of this reaction. (Total for Question 22 = 17 marks) # **BLANK PAGE** 23 This question is about some reactions involving ethanal, CH₃CHO. (a) Ethanal is a carbonyl compound. Describe the test for a **carbonyl** compound and give the result. (2) (b) Identify, by name or formula, the reagent needed to carry out Reaction **A**. (1) (c) (i) Identify the **two** organic products of Reaction **B**. (2) (ii) State what you would **see** when Reaction **B** is carried out. (1) | (d) (i) | Name the reaction type and mechanism that occurs in Reaction ${\bf C}$. | (1) | |---------|--|-------| | (ii) | Draw the mechanism for Reaction C . Include curly arrows, and all the relevant dipoles and lone pairs. | (4) | | | | | | | | | | (iii) | The organic product of Reaction $\bf C$ is a racemic mixture. State the meaning of 'racemic mixture'. | | | | | (1) | | *(iv | By referring to the mechanism of Reaction C , explain why a racemic mixture forms in this reaction. | (2) | | | | | | | (Total for Question 23 = 14 ma | ırks) | - **24** This question is about compounds of iodine. - (a) Potassium iodate(V) can be decomposed by heating. $$KIO_3(s) \rightarrow KI(s) + 1\frac{1}{2}O_2(g)$$ (i) Use data from your Data Booklet to calculate the enthalpy change for this reaction. (2) (ii) Calculate the standard entropy change of the system, $\Delta S_{\text{system}}^{\Theta}.$ [The standard molar entropy of $\frac{1}{2}O_2(g)$ is $102.5 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$] (2) | (iii) Use your answers to (a)(i) and (a)(ii) to | calculate the minimum temperature for | |---|---------------------------------------| | this reaction to be spontaneous. | | | | | Show your working clearly. (2) (1) (b) Some data about potassium iodide and its ions are shown. Enthalpy change of solution of $KI = +20.3 \text{ kJ mol}^{-1}$ | lon | Enthalpy change of hydration / kJ mol ⁻¹ | |--------------------|---| | K ⁺ (g) | -320 | | I ⁻ (g) | -308 | (i) Use these data to calculate the lattice energy of potassium iodide. (2) *(ii) Explain why the lattice energy of sodium iodide is more exothermic than that of potassium iodide. (2) (Total for Question 24 = 11 marks) **TOTAL FOR SECTION B = 52 MARKS** ### **SECTION C** # Answer ALL the questions. Write your answers in the spaces provided. - **25** This question is about the chemistry of methanol. - (a) Methanol can be synthesised by the reaction of carbon monoxide with hydrogen. $$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$ A mixture of 18.5 mol of carbon monoxide and 13.5 mol of hydrogen was allowed to reach equilibrium at 550 K and 60 atm pressure. At equilibrium the mixture contained 5.5 mol of methanol. (i) Write the expression for the equilibrium constant in terms of pressure, K_p , for this reaction. (1) (ii) Calculate the number of mol of carbon monoxide and hydrogen remaining at equilibrium. Hence calculate the value of K_p at 550 K. Give your answer to **three** significant figures and include the units. (5) | | The value of K_p is greater when the reaction is carried out at a lower temperate Use this information to deduce the sign of $\Delta S_{\text{surroundings}}$ for the forward reaction. | | |-----|--|-----| | | Give your reasoning. | (2) | | | | | | | | | | | | | | A ı | organic compound, P , has the molecular formula $C_5H_8O_3$. molecule of P has a carbon chain that is not branched, and contains o different functional groups. | | | (i) | P reacts with sodium carbonate solution, forming bubbles of a colourless gas. There is no colour change when P is warmed with a mixture of potassium dichromate(VI) and sulfuric acid. | | | | Use all the information provided to identify, by name or formulae, the two functional groups present in P . | (2) | | | | (-) | | | | | (ii) The mass spectrum of $\bf P$ has a strong peak at m / e = 43. Suggest the structural formula of the fragment causing this peak. (1) *(iii) When **P** is heated with methanol, in the presence of dilute sulfuric acid, a pleasant smelling compound, **Q**, is formed. The **high resolution** proton nmr spectrum of **Q** is shown. The numbers show the relative areas of the peaks. Draw the structure of \mathbf{Q} . Justify your answer by considering the relative areas of the four peaks, and their splitting patterns. (4) (iv) Write an equation using structural formulae to show the reaction of **P** with methanol in the presence of dilute sulfuric acid to form **Q**. (2) (v) The reaction of **P** with methanol does not give a 100% yield of **Q** because of the equilibrium position which is reached. Suggest the formula of a compound which would react with methanol to form **Q** in a reaction which is **not** reversible. (1) (Total for Question 25 = 18 marks) TOTAL FOR SECTION C = 18 MARKS TOTAL FOR PAPER = 90 MARKS # **BLANK PAGE** # The Periodic Table of Elements | rted | [222]
Rn
radon
86 | Xe
xenon
54 | 83.8
Kr
krypton
36 | (18)
(18)
4,0
He hettum 2
2 2
2 2
2 2
Ne neon 10
10
39.9
Ar argon 18 | |---|--|---|--|--| | ееп геро | [210] At astatine 85 | 126.9
I
iodine
53 | 79.9 Br bromine 35 | (17)
19.0
F fluorine
9
35.5
CL
chlorine
17 | | 116 have t | [209]
Po
polonium
84 | 127.6
Te
tellurium
52 | Se
selenium
34 | (76)
16.0
O oxygen
8
32.1
S
S sulfur
16 | | tomic numbers 112-116 hav
but not fully authenticated | 209.0
Bi
bismuth
83 | 121.8
Sb
antimony
51 | 74.9
AS
arsenic
33 | 14.0 N nitrogen 7 31.0 P phosphorus 15 | | atomic nur
but not fi | 207.2 Pb lead 82 | 118.7
Sn
tin
50 | 72.6
Ge
germanium
32 | (14)
(12.0
C Carbon 6
6 Si
stiticon 14 | | Elements with atomic numbers 112-116 have been reported but not fully authenticated | 204.4
T1
thallium
81 | In
In
Indium
49 | 69.7
Ga
gallium
31 | 10.8
B boron 5
27.0
Al aluminium 13 | | Elem | 200.6
Hg
mercury
80 | 112.4
Cd
cadmium
48 | 65.4
Zn
zinc
30 | (12) | | [272]
Rg
roentgenium | 197.0
Au
gold
79 | Ag
silver
47 | 63.5
Cu
copper
29 | (11) | | [271] Ds | 195.1
Pt
platinum
78 | 106.4
Pd
palladium
46 | 58.7
Ni
nicket
28 | (10) | | [268]
Mt | 192.2
Ir
iridium
77 | 102.9
Rh
rhodium
45 | 58.9
Co
cobalt
27 | (6) | | [277]
Hs | 190.2
Os
osmium
76 | Ru
Ru
ruthenium
44 | 55.8
Fe
iron
26 | 1.0
T
hydrogen
1 | | [264]
Bh
bohrium | Re
rhenium
75 | | Mn
Manganese
25 | (a) | | Sg
seaborgium | 183.8
W
tungsten
74 | 95.9 [98] Mo Tc molybdenum technetium 42 43 | 52.0 54.9 Cr Mn chromium manganese 24 25 | mass
ool
umber
(6) | | [262] Db dubnium s | 180.9
Ta
tantalum
73 | Nb
mtobium n | 50,9
V
vanadium
23 | Key relative atomic mass atomic symbol name atomic (proton) number (4) (5) (6) | | [261]
Rf
rutherford/um | 178.5
Hf
hafnium
72 | 91.2
Zr
zirconium
40 | 47.9
Ti
titanium
22 | relativa atoric atomic (4) | | [227] Ac* actinium | 138.9
La*
lanthanum
57 | 88.9 Y yttrium 39 | 45.0
Sc
scandium
21 | 33 | | [226]
Ra
radium | 137.3
Ba
barium 1
56 | 87.6
Sr
strontium
38 | 40.1
Ca
calcium
20 | (2)
9.0
8e berylltum
4
24.3
Mg
magnesium | | [223]
Fr
francium | 132.9
Cs
caesium
55 | 85.5
Rb
rubidium 37 | 39.1
K
potassium
19 | (1)
6.9
6.9
Li
Lithium
3
23.0
Na
sodium r | * Lanthanide series * Actinide series Yb Lu ytterbium lutetium Md No Lr mendelevium nobelium lawrencium 103 [254] 102 Tm thulium [526] 101 69 Es Fm einsteinium fermium 167 Er erbium [253] 100 68 165 Ho holmium [254] 66 67 163 Dy dysprosium californium [251] ť 86 99 Tb terbium 65 BK berkelium of 97 144 [147] 150 152 157 Nd Pm Sm Eu Gd neodymium promethium samarium 60 61 62 63 64 Cm curum 96 U Np Pu Am [243] 95 [242] Pu 94 [237] 93 238 92 Pr Pr prascodymium protactinium [231] Pa 6 59 Thorium I Ce Cerium 232 06