| Write your name here Surname                       | Other no      | ames                     |
|----------------------------------------------------|---------------|--------------------------|
| Edexcel GCE                                        | Centre Number | Candidate Number         |
| Chemistr<br>Advanced Subsidi<br>Unit 3B: Chemistry | ary           | I Alternative            |
| Monday 9 January 2012 -<br>Time: 1 hour 15 minute  | •             | Paper Reference 6CH07/01 |
| Candidates may use a calcu                         | ılator.       | Total Marks              |

## **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
  - there may be more space than you need.

## Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
   use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

## **Advice**

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 3 9 3 0 5 A 0 1 1 6

Turn over ▶



# Answer ALL the questions. Write your answers in the spaces provided.

1 A series of tests was carried out on A, a white powder, which is known to contain one cation and one anion. Complete the table below. You may use names or formulae in your answers.

|     | Test                                                                                        | Observations                                                       | Inferences                     |     |
|-----|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------|-----|
| (a) | Carry out a flame test on <b>A</b> .                                                        |                                                                    | Cation is potassium            |     |
|     |                                                                                             |                                                                    |                                | (1) |
| (b) | Add a mixture of dilute nitric acid and aqueous silver nitrate to an aqueous solution of A. | A yellow precipitate forms.                                        | Anion is                       |     |
|     | Then add an excess of dilute aqueous ammonia to the mixture.                                | When excess dilute aqueous ammonia is added                        |                                | (2) |
| (c) | Add an aqueous solution of bromine to an aqueous solution of <b>A</b> .                     | The colour of the solution of bromine is  When bromine is added to | The change in colour is due to |     |
|     |                                                                                             | an aqueous solution of <b>A</b> the colour of the mixture is       | the formation of               | (3) |



|     | Test                                                   | Observations                                                                                                                | Inferences                                  |     |
|-----|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----|
| (d) | Add concentrated sulfuric acid to a solid sample of A. | A vigorous reaction occurs producing a black solid, a yellow solid, a gas with an unpleasant smell and some coloured fumes. | The black solid is  and the yellow solid is |     |
|     |                                                        |                                                                                                                             |                                             | (2) |

(Total for Question 1 = 8 marks)

2 A series of tests was carried out on a compound, **B**, which is known to contain **either** carbonate **or** sulfate (sulfate(VI)) ions as well as one cation.

Complete the inferences column. You may use names or formulae in your answers.

|     | Test                                            | Observations                                       | Inferences                             |    |
|-----|-------------------------------------------------|----------------------------------------------------|----------------------------------------|----|
| (a) | Carry out a flame test on <b>B</b> .            | Yellow flame.                                      | The cation in <b>B</b> is              | (1 |
| (b) | Add aqueous barium chloride solution to an      | A white precipitate forms.                         | The precipitate could be either        |    |
|     | aqueous solution of <b>B</b> .                  |                                                    | or                                     | (2 |
| (c) | Add dilute hydrochloric acid to the mixture     | Some fizzing occurs and the precipitate dissolves. | The anion in <b>B</b> is               |    |
|     | formed in (b) until there is no further change. |                                                    | and the fizzing is due to formation of |    |
|     |                                                 |                                                    |                                        | (2 |

|   | <b>(4</b> )  | The   | formul | l۵ | of R        | 10 |
|---|--------------|-------|--------|----|-------------|----|
| ( | $\mathbf{u}$ | ) Ine | formul | la | 01 <b>D</b> | 18 |

(1)

(Total for Question 2 = 6 marks)

BLANK PAGE



3 Magnesium carbonate reacts with dilute nitric acid as shown in the equation below.

$$MgCO_3(s) + 2HNO_3(aq) \rightarrow Mg(NO_3)_2(aq) + CO_2(g) + H_2O(l)$$

The enthalpy change for this reaction can be determined as follows:

### Procedure

- 1. Weigh 3.50 g of finely powdered magnesium carbonate.
- 2. Transfer 50.0 cm<sup>3</sup> of 2.00 mol dm<sup>-3</sup> nitric acid into a polystyrene cup and record the temperature of the acid.
- 3. Add the magnesium carbonate to the nitric acid.
- 4. Stir the mixture and record the maximum temperature reached.

#### Results

| Temperature of nitric acid before addition of magnesium carbonate | 21.0 °C |
|-------------------------------------------------------------------|---------|
| Final temperature of solution                                     | 29.7 °C |

(a) Explain why the magnesium carbonate used in this experiment should be finely powdered rather than in lumps.

(1)

(b) (i) Calculate the number of moles of magnesium carbonate in  $3.50\ \mathrm{g}$ .

[Assume the molar mass of magnesium carbonate is 84 g mol<sup>-1</sup>.]

(1)

(ii) The volume of dilute nitric acid used contained 0.100 mol of HNO<sub>3</sub>. Suggest why this amount is suitable.

(1)



| (c) (i)   | Calculate the heat energy transferred, in joules, in this reaction between magnesium carbonate and nitric acid.                                                            |             |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
|           | Use the expression                                                                                                                                                         |             |  |  |  |  |
|           | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                       |             |  |  |  |  |
|           | [Assume the mass of solution is 50 g and its specific heat capacity is 4.18 J $g^{-1}  {}^{\circ}C^{-1}$ .]                                                                |             |  |  |  |  |
|           |                                                                                                                                                                            | (1)         |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
| (ii)      | Calculate the enthalpy change, $\Delta H$ , for the reaction of one mole of magnesium carbonate with nitric acid. Your answer should be in units of kJ mol <sup>-1</sup> , |             |  |  |  |  |
|           | expressed to <b>three</b> significant figures, and include a sign.                                                                                                         | (2)         |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
| (d) (i)   | The nitric acid for this experiment could be measured using either a pipette or a                                                                                          |             |  |  |  |  |
|           | measuring cylinder. Give <b>one</b> practical advantage of using each piece of appara                                                                                      | tus.<br>(2) |  |  |  |  |
| Pipette   |                                                                                                                                                                            |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |
| Measuring | cylinder                                                                                                                                                                   |             |  |  |  |  |
|           |                                                                                                                                                                            |             |  |  |  |  |



| (ii) The <b>total error</b> in measuring the mass of the magnesium carbonate was a Calculate the percentage error in the weighing.                                                                                                                                                                                                                                                                                    | ±0.01 g. (1)                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| (e) State and explain the effect, if any, on the calculated enthalpy change, $\Delta H$ , if                                                                                                                                                                                                                                                                                                                          |                               |
| (i) a copper calorimeter were used instead of the polystyrene cup.                                                                                                                                                                                                                                                                                                                                                    | (2)                           |
| (ii) 3.50 g of <b>damp</b> magnesium carbonate were used.                                                                                                                                                                                                                                                                                                                                                             | (2)                           |
| (f) The experiment was repeated with a change in the procedure. The temperatur dilute nitric acid was measured every minute for three minutes. After exactly and a half minutes, the magnesium carbonate was added and the mixture was The temperature of the mixture was then taken every minute for another six magnesium.  A graph of the temperature readings against time using this procedure is show opposite. | three<br>stirred.<br>ninutes. |





(Total for Question 3 = 16 marks)

| This qu   | nestion is about the alcohol, propan-1-ol.                                                                                                                                                     |     |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (a) Giv   | re <b>two</b> observations when propan-1-ol reacts with a small piece of sodium.                                                                                                               | (2) |
| oservatio | on 1                                                                                                                                                                                           |     |
| servatio  | on 2                                                                                                                                                                                           |     |
| (b) A st  | tudent investigated the rate of reaction of propan-1-ol with sodium.                                                                                                                           |     |
|           | gest <b>one</b> suitable measurement which could be made to determine the rate of thi etion.                                                                                                   | s   |
| 1040      | ALOII.                                                                                                                                                                                         | (1) |
|           | mall amount of phosphorus(V) chloride (phosphorus pentachloride), PCl <sub>5</sub> , is ed to propan-1-ol in a test tube.  Describe the appearance of the fumes at the mouth of the test tube. | (1) |
|           |                                                                                                                                                                                                |     |
| (ii)      | An open bottle of concentrated ammonia is held near the mouth of the tube. Describe what would be seen at the mouth of the test tube.                                                          | (1) |
|           |                                                                                                                                                                                                |     |





5 Propanoic acid may be prepared by oxidizing propan-1-ol in acidic conditions.

$$X + H_2SO_4$$
 $CH_3CH_2CH_2OH$ 
 $CH_3CH_2COOH$ 

### **Procedure**

- 1. Pour 10 cm<sup>3</sup> of distilled water into a boiling tube and add 12 g of oxidizing agent **X**. Shake the mixture and leave **X** to dissolve.
- 2. Pour 3 cm<sup>3</sup> of propan-1-ol into a round-bottom flask and add 10 cm<sup>3</sup> of distilled water and a few anti-bumping granules. Set up the apparatus for heating under reflux.
- 3. Add 4 cm<sup>3</sup> of concentrated sulfuric acid, drop by drop, to the propan-1-ol. While the mixture is still warm, add the solution of oxidizing agent **X**, drop by drop. The energy released from the reaction should cause the mixture to boil without external heating.
- 4. When all of the solution of **X** has been added, use a low Bunsen burner flame to keep the mixture boiling for 10 minutes, not allowing any vapour to escape.
- 5. Distil the mixture in the flask using the apparatus shown below. Collect 5–6 cm<sup>3</sup> of distillate, which is an aqueous solution of propanoic acid.



(a) Suggest, by name or formula, a suitable oxidizing agent, X, for this reaction.

(1)



| (b) What colour change does 24        | Cundergo when it oxidizes propan-1-ol?          | (1) |
|---------------------------------------|-------------------------------------------------|-----|
| From                                  | to                                              |     |
| (c) Draw a <b>labelled</b> diagram sh | nowing the apparatus for heating under reflux.  | (2) |
|                                       |                                                 |     |
|                                       |                                                 |     |
|                                       |                                                 |     |
|                                       |                                                 |     |
|                                       |                                                 |     |
|                                       |                                                 |     |
|                                       |                                                 |     |
| (d) Give <b>two</b> reasons why the e | escape of vapour in step 4 should be prevented. | (2) |
| eason 1                               |                                                 |     |
| eason 2                               |                                                 |     |
| (e) How does the reflux appara        | itus prevent escape of vapour?                  | (1) |
|                                       |                                                 |     |
|                                       |                                                 |     |



| (f) | Some   | water | can be   | removed   | d from  | the dist | illate i | in ste | p 5 by  | adding  | a soli | id dryir | ıg    |
|-----|--------|-------|----------|-----------|---------|----------|----------|--------|---------|---------|--------|----------|-------|
|     | agent. | The   | solution | n of prop | anoic a | icid can | then     | be de  | ecanted | leaving | g the  | drying   | agent |
|     | behind | 1.    |          |           |         |          |          |        |         |         |        |          |       |

(i) Suggest a suitable solid drying agent.

(1)

(ii) Suggest why removing excess solid drying agent by decanting, rather than filtering through filter paper, improves the yield.

(1)

- (g) In a larger scale preparation of propanoic acid, 10.0 g of propan-1-ol was used.
  - (i) Calculate the maximum mass of propanoic acid which could be formed from 10.0 g of propan-1-ol.

|                                  | Propan-1-ol | Propanoic acid |
|----------------------------------|-------------|----------------|
| Molar mass / g mol <sup>-1</sup> | 60.1        | 74.1           |

(2)



|           | IOIAL FOR PAPER = 50                                                                                                                                                                                                                 | UWAKKS  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|           | (Total for Question 5 = TOTAL FOR PAPER = 5                                                                                                                                                                                          |         |
| planation | 1                                                                                                                                                                                                                                    |         |
|           |                                                                                                                                                                                                                                      |         |
| sulf      | nother experiment, the same reaction mixture (propan-1-ol, <b>X</b> and concentric acid) was heated in the apparatus shown in step 5. Identify the main uct which would be collected and explain why propanoic acid is not produced. | organic |
|           |                                                                                                                                                                                                                                      |         |
|           |                                                                                                                                                                                                                                      |         |
|           |                                                                                                                                                                                                                                      |         |
|           |                                                                                                                                                                                                                                      |         |
|           |                                                                                                                                                                                                                                      |         |
|           |                                                                                                                                                                                                                                      |         |
|           |                                                                                                                                                                                                                                      | (2)     |
|           | The density of propanoic acid is 0.99 g cm <sup>-3</sup> .                                                                                                                                                                           | (2)     |
|           |                                                                                                                                                                                                                                      |         |



| U        | n        |
|----------|----------|
| +        | ز        |
| Ž        | Ξ        |
| 2        | ט        |
| ٤        | =        |
| 0        | U        |
| Ц        | ĭ        |
| 4        | _        |
| C        | 5        |
| 0        | U        |
| 4        | ₹        |
| <u>,</u> | ₹        |
| ۴        | <u> </u> |
| ripoir   | ر        |
| ÷        | Š        |
| >        | ≺        |
| ٠,       | 2        |
| 7        | -        |
| ۵        | ַ        |
| 0        | U        |
| 7        |          |
| ш        | _        |

| 0 (8) | (18)<br>4.0<br><b>He</b> | metium<br>2 | 20.2                 | Ne            | neon<br>10     | 39.9               | Αr                 | argon<br>18                    | 83.8 | 궃  | krypton<br>24 | 2    | 131.3 | ×        | xenon<br>54      | [222] | R   | radon<br>86     |       | ted                                                     |                                                   |    |   |                |
|-------|--------------------------|-------------|----------------------|---------------|----------------|--------------------|--------------------|--------------------------------|------|----|---------------|------|-------|----------|------------------|-------|-----|-----------------|-------|---------------------------------------------------------|---------------------------------------------------|----|---|----------------|
| 7     |                          | (17)        | 19.0                 | L             | fluorine<br>9  | 35.5               | บ                  | chlorine<br>17                 | 79.9 | B  | bromine       | 3    | 126.9 | _        | iodine<br>53     | [210] | Αt  | astatine<br>85  |       | een repor                                               |                                                   |    |   |                |
| 9     |                          | (16)        | 16.0                 | 0             | oxygen<br>8    | 32.1               | s                  | sulfur<br>16                   | 79.0 | Se | selenium      | 5    | 127.6 | <u>Б</u> | tellurium<br>52  | [506] | 8   | polonium<br>84  |       | 116 have b                                              | ticated                                           |    |   |                |
| 2     |                          | (15)        | 14.0                 | z             | nitrogen<br>7  | 31.0               | ۵                  | phosphorus<br>15               | 74.9 | As | arsenic       | 3    | 121.8 | S        | antimony<br>51   | 209.0 | Bi  | bismuth<br>83   |       | nbers 112-                                              | but not fully authenticated                       |    |   |                |
| 4     |                          | (14)        | 12.0                 | U             | carbon<br>6    | 28.1               |                    | silicon p                      | 72.6 | g  | germanium     | 70   | 118.7 | S        | ti<br>20         | 207.2 | Ъ   | lead<br>82      |       | Elements with atomic numbers 112-116 have been reported | but not fu                                        |    |   |                |
| 3     |                          | (13)        | 10.8                 | ω             | boron<br>5     | 27.0               | A                  | aluminium<br>13                | 69.7 | g  | gallium       | 5    | 114.8 | 드        | indium<br>49     | 204.4 | F   | thallium<br>81  |       | ents with                                               |                                                   |    |   |                |
|       |                          | 95          | 8:                   |               |                |                    |                    | (12)                           | 65.4 | Zu | zinc          | 2    | 112.4 | 8        | cadmium<br>48    | 200.6 | Hg  | mercury<br>80   |       | Elem                                                    |                                                   |    |   |                |
|       |                          |             |                      |               |                |                    |                    | (11)                           | 63.5 | J  | copper        | 67   | 107.9 | Ag       | silver<br>47     | 197.0 | Ρn  | gold<br>79      | [272] | Rg                                                      | oentgenium<br>111                                 |    |   |                |
|       |                          |             |                      |               |                |                    |                    | (10)                           | 58.7 | ź  | nickel        | 97   | 106.4 | Б        | palladium<br>46  | 195.1 | 꿑   | platinum<br>78  | [271] | Os                                                      | meitnerium damstadtium roentgenium<br>109 111 111 |    |   |                |
|       |                          |             |                      |               |                |                    |                    | (6)                            | 58.9 | ვ  | cobalt        | /7   | 102.9 | 윤        | rhodium<br>45    | 192.2 | 느   | iridium<br>77   | [398] | ۸t                                                      | meitnerium<br>109                                 |    |   |                |
|       | 1.0<br><b>H</b>          | -           |                      |               |                |                    |                    | (8)                            | 55.8 | Fe | iron          | 07   | 101.1 | Ru       | ruthenium<br>44  | 190.2 | o   | osmium<br>76    | [277] |                                                         | hassium<br>108                                    |    |   |                |
|       |                          |             |                      |               |                |                    |                    | (2)                            | 54.9 | ۸  | manganese     | C7   | [86]  | բ        | technetium<br>43 | 186.2 | Re  | rhenium<br>75   |       | 絽                                                       | bohrium<br>107                                    |    |   |                |
|       |                          |             | mass                 | lod           | umber          |                    |                    | (9)                            | 52.0 | ъ  | chromium      | 47   | 95.9  | Wo       | molybdenum<br>42 | 183.8 | ≥   | tungsten<br>74  | [592] | Sg                                                      | seaborgium<br>106                                 |    |   |                |
|       | Key                      | ve atomic   | relative atomic mass | atomic symbol | mic sym        | name<br>(proton) n | name<br>(proton) n | name<br>atomic (proton) number |      |    | (2)           | 50.9 | >     | Ę        | 57               | 92.9  |     | niobium<br>41   | 180.9 | Тa                                                      | tantalum<br>73                                    | ۱_ | В | dubnium<br>105 |
|       |                          |             | relati               | ato           | atomic         |                    |                    | (4)                            | 47.9 | j۲ | titanium      | 77   | 91.2  | Zr       | zirconium<br>40  | 178.5 | Ŧ   | hafnium<br>72   | [261] | ¥                                                       | rutherfordium<br>104                              |    |   |                |
|       |                          |             |                      |               |                |                    |                    | (3)                            | 45.0 | S  | scandium      | 17   | 88.9  | >        | yttrium<br>39    | 138.9 | La* | lanthanum<br>57 | [227] |                                                         | actinium<br>89                                    |    |   |                |
| 7     |                          | (2)         | 0.6                  | Be            | beryllium<br>4 | 24.3               | W                  | magnesium<br>12                | 40.1 | S  | calcium       | 07   | 87.6  | 'n       | strontium<br>38  | 137.3 | Ba  | barium<br>56    | [326] | Ra                                                      | radium<br>88                                      |    |   |                |
| •     |                          | (1)         | 6.9                  | :5            | lithium<br>3   | 23.0               | Š                  |                                | 39.1 | ¥  | potassium     | 4    | 85.5  | &        | rubidium<br>37   | 132.9 | ర   | caesium<br>55   | [223] | <u></u>                                                 | francium<br>87                                    |    |   |                |
|       |                          |             |                      |               |                |                    |                    |                                |      |    |               |      |       |          |                  |       |     |                 |       |                                                         |                                                   |    |   |                |

<sup>\*</sup> Lanthanide series

<sup>\*</sup> Actinide series

|       |          | 39,022       | -  | _     |    | F            |     |
|-------|----------|--------------|----|-------|----|--------------|-----|
| 175   | 3        | lutetium     | 71 | [257] | ۲  | lawrenciur   | 103 |
| 173   | χ,       | ytterbium    | 70 | [254] | ž  | nobelium     | 102 |
| 169   | Ē        | thulium      | 69 | [256] | Þ₩ | mendelevium  | 101 |
| 167   | ы        | erbium       | 68 | [253] | F  | fermium      | 100 |
| 165   | 유        | holmium      | 67 | [254] | E  | einsteinium  | 66  |
| 163   | ð        | dysprosium   | 99 | [251] | ប  | californium  | 86  |
| 159   | <b>T</b> | +            |    | [245] | 쑮  | berkelium    | 26  |
| 157   | В        | gadolinium   | 64 | [247] | 5  | curium       | 96  |
| 152   | E        | europium     | 63 | [243] | Am | americium    | 95  |
| 150   | Sm       | samarium     | 62 | [242] | P  | plutonium    | 94  |
| [147] | Pm       | promethium   | 61 | [237] | ď  | neptunium    | 93  |
| 14    | P        | neodymium    | 09 | 238   | _  | uranium      | 92  |
| 141   | F        | praseodymium | 26 | [231] | Pa | protactinium | 9   |
| 140   | S        | cerium       | 58 | 232   | £  | thorium      | %   |