Write your name here			
Surname		Other name	s
Edexcel GCE	Centre Number		Candidate Number
Chemistry Advanced Subsidia Unit 3B: Chemistry	ary	Skills I <i>I</i>	Alternative
Monday 11 January 2010 Time: 1 hour 15 minutes			Paper Reference 6CH07/01
Candidates may use a calcul	ator.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL the questions. Write your answers in the spaces provided.

- 1 Compound A is a white solid that contains one cation and one anion.
 - (a) A flame test is carried out on compound **A** by mixing the solid with concentrated hydrochloric acid and using a piece of wire to place some of the solution formed in a Bunsen flame. The flame is coloured yellow.
 - (i) Name a material from which the wire is made.

Suggest ONE reason why this material is used.

	(2)
Name	
(ii) Identify, by name or formula, the cation present in compound A.	(1)
(b) When aqueous silver nitrate solution is added to a solution of compound A , a precipitate forms. The cream precipitate dissolves in concentrated aqueous a solution.	
(i) Name the cream precipitate formed when aqueous silver nitrate is added solution of compound A .	
	(1)
(ii) Give the formula of the anion in compound A .	(1)
(iii) Describe what you would see if the cream precipitate in (b)(i) was left in sunlight.	n
	(1)

	Concentrated sulfuric acid is added to compound $\bf A$ in a test tube. Steamy fumes are seen at the mouth of the test tube.	,
	After a few minutes, the contents of the test tube turn brown. A gas is given off which is tested with a piece of filter paper soaked in a solution of aqueous acidified potassium dichromate(VI). The paper turns green.	
	(i) Identify, by name or formula, the steamy fumes formed initially.	(1)
	(ii) Describe a further test you could carry out to confirm the identity of the steamy fumes. Give the result of your test.	(2)
Test		
Result		
	(iii) Identify, by name or formula, the substance responsible for the brown colour in the test tube.	
	the test tube.	(1)
	(iv) Name the gas which turned the filter paper green. Suggest the type of reaction by which this gas was formed from sulfuric acid.	
		(2)
Gas		
Type o	of reaction	
	(Total for Question 1 = 12 man	rks)

2	This question is about two isomeric alcohols, X and Y , each with molar mass 60 g mol	1.
	A solution of potassium dichromate(VI) in dilute sulfuric acid is added to each alcohol. Both alcohols cause the same colour change of the mixture on heating.	
	(a) A colourless liquid, $\bf B$, is distilled from the mixture containing alcohol $\bf X$.	
	The liquid ${\bf B}$ forms a red precipitate when it is boiled with Benedict's or Fehling's solution.	
	Give the displayed formula of liquid ${\bf B}$, and the name of alcohol ${\bf X}$.	(2)
Li	iquid B	
Na	ame of alcohol X	
	(b) A colourless liquid, C, is distilled from the mixture containing alcohol Y.	
	C does not react when it is boiled with Benedict's or Fehling's solution.	
	Give the names of liquid C and alcohol Y .	(2)
Li	Give the names of liquid C and alcohol Y .	(2)
	iquid C lcohol Y	
	iquid C	
	iquid C lcohol Y	

 3 This question is about calcium hydroxide, Ca(OH)₂. The solubility of calcium hydroxide in water can be found by titrating a saturated solution of calcium hydroxide with hydrochloric acid of known concentration. (a) Describe how you would make a saturated solution of calcium hydroxide suitable use in this titration. Do not describe the subsequent titration procedure. 	e for
 (b) 10.0 cm³ portions of the saturated solution are placed in a conical flask and titrate with 0.0500 mol dm⁻³ hydrochloric acid added from a burette. (i) Name the apparatus used to measure the 10.0 cm³ portions. 	ed (1)
(ii) Suggest a suitable indicator for this titration and state the colour change you would expect to see at the end-point. Indicator	(2)
Colour change from	

(c) The following results were obtained:

Titration numbers	1	2	3
Final burette reading / cm ³	19.20	28.05	37.10
Initial burette reading / cm ³	10.00	19.20	28.15
Titre / cm ³	9.20	8.85	

(i) Fill in the third titre value in the table.	(1)	
(ii) Suggest why the first titre should be disregarded.	(1)	
(iii) Calculate the mean titre.	(1)	
	cm ³	

(iv) Calculate the number of moles of hydrochloric acid in the mean titre. (1)

(v) The equation for the reaction is

$$Ca(OH)_2(aq) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(l)$$

Calculate the number of moles of calcium hydroxide in a 10.0 cm³ portion of the saturated solution.

(1)

(vi) Calculate the concentration of calcium hydroxide in mol dm⁻³.

(1)

(vii) Calculate the solubility of calcium hydroxide in g $\,\mathrm{dm}^{-3}$.

(1)

- (d) The standard enthalpy change for the reaction of calcium hydroxide with hydrochloric acid was found by reacting $0.0100\,\mathrm{mol}$ of solid calcium hydroxide with $50.0\,\mathrm{cm^3}$ of a $1.00\,\mathrm{mol}$ dm⁻³ solution of hydrochloric acid (an excess), in a polystyrene cup. The temperature rose from $21.2\,\mathrm{^{\circ}C}$ to $26.7\,\mathrm{^{\circ}C}$.
 - (i) Calculate the energy, in joules, transferred in the reaction. Use the expression Energy transferred = mass \times specific heat capacity \times temperature change [Assume density of solution = 1.0 g cm⁻³, specific heat capacity of solution = 4.18 J g⁻¹ °C⁻¹]

(1)

(ii) Calculate the standard enthalpy change, ΔH^{\oplus} , for the reaction. Include a sign and units in your answer.

(2)

(iii) Calculate the percentage error in the temperature change caused by an uncertainty of 0.1°C in each thermometer reading.

(2)

(iv)	The experiment was repeated using 50.0 cm ³ of a 1.00 mol dm ⁻³ solution of nitric acid instead of the hydrochloric acid. Explain why the temperature change was the same in both experiments.	(1)
(v)	The experiment was repeated again using 25 cm ³ of 2.00 mol dm ⁻³ hydrochloric acid. Predict the temperature change in this experiment.	(1)
(vi)	Which of the experiments in (iv) and (v) gave the least error in the temperature change? Justify your answer.	(1)
	(Total for Question 3 = 20 mar	·ks)

4 An experiment to prepare a sample of 2-chloro-2-methylpropane uses the reaction of 2-methylpropan-2-ol with concentrated hydrochloric acid.

$$(CH_3)_3COH + HCl \rightarrow (CH_3)_3CCl + H_2O$$

The steps of the experimental procedure are as follows

- 1. Place 0.20 mol of 2-methylpropan-2-ol and 70 cm³ of concentrated hydrochloric acid in a large conical flask.
- 2. Stopper and shake the flask at intervals, releasing any pressure after each shaking.
- 3. Separate the 2-chloro-2-methylpropane from the aqueous solution using a separating funnel.
- 4. To the 2-chloro-2-methylpropane in the separating funnel, add 20 cm³ of sodium hydrogencarbonate solution. Shake the separating funnel, carefully releasing carbon dioxide frequently.
- 5. Separate the 2-chloro-2-methylpropane and repeat the washing with sodium hydrogenearbonate solution until this washing step is no longer necessary.
- 6. Transfer the 2-chloro-2-methylpropane to a small conical flask and add a suitable drying agent.
- 7. Filter off the drying agent, collecting the 2-chloro-2-methylpropane into a distillation flask. Heat the flask, collecting the fraction that distils off between 50 °C and 52 °C.

Data

Property	2-methylpropan-2-ol	2-chloro-2-methylpropane
Density / g cm ⁻³	0.789	0.842
Molar mass / g mol ⁻¹	74.1	92.6
Boiling temperature / °C	82.4	50.8

(a) Calculate the volume of 2-methylpropan-2-ol used in the preparation.	(1)
(b) Draw a diagram of a separating funnel that could be used in step 3. Label the 2-chloro-2-methylpropane layer.	(2)
(c) (i) Suggest why the product is washed with sodium hydrogencarbonate solution (step 4).	(1)
(ii) How would you know that no further washing with sodium hydrogencarbonate was necessary?	(1)

(d) Suggest a suitable drying agent to dry the 2-chloro-2-methylpropane (step 6).	
---	--

(1)

(e) Draw a labelled diagram of the apparatus you would use to carry out the final distillation (step 7).

(4)

	(1) stion 4 = 14 marks) PER = 50 MARKS
(ii) Give the expected result of this test.	(1)
	(1)
g) A suitable chemical test for the chlorine in a chloroalkane, such as 2-chloro-2-methylpropane, is to add the chloroalkane to a mixture of nitrate solution and ethanol.(i) Suggest why ethanol is added to the mixture.	aqueous silver
	(2)
	(2)

BLANK PAGE

	0 (8)	(18) 4,0 He hetium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Krypton 36	Xe xenon 54	[222] Rn radon 86	orted	=	
	1	(21)	19.0 F fluorine	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 	[210] At astatine 85	реел гер	175 Lu lutetium 71	[257] Lr
	9	(16)	16.0 Oxygen 8	32.1 S sulfur 16	79.0 Selentum 34	127.6 Te tellurium 52	[209] Po potonium 84	116 have I	173 Yb ytterbium 70	[254] No
	Ŋ	(15)	14.0 N nitrogen 7	31.0 P	As arsenic 33	Sb antimony 51	209.0 Bi bismuth 83	Elements with atomic numbers 112-116 have been reported but not fully authenticated	169 Tm thulium 69	[256] Md
	4	(47)	12.0 C carbon 6	Si Sificon 14	72.6 Ge germanium 32	5.811 Fin 50	207.2 Pb lead 82	atomic nur but not f	167 Er erbium 68	[253] Fm
	m	(13)	10.8 B boron 5	27.0 Al aluminium 13	Ga gallium 31	Indium 49	204.4 Tl thallium 81	ents with	165 Ho hotmtum 67	[254] Fe
The Periodic Table of Elements				(12)		Cd Cadmium 48	200.6 Hg mercury 80	Elem	163 Dy dysprosium 66	[251]
		(9) (11)			63.5 Cu copper 29	107.9 Ag sliver 47	197.0 Au gold 79	Rg roentgenium 111	159 Tb terbium 65	[245] RV
le of					58.7 Ni nicket 28	106.4 Pd palladium 46	Pt Pt platinum 78	[271] Ds damstadtäun 110	157 Gd gadolinium 64	[247]
c Tab					S8.9 Co cobalt 27	Rh rhodium 45	192.2 	[268] Mt meitnerium 109	152 Eu europium 63	[243]
riodi		1.0 Hydrogen		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[237] [242]
The Pe		0			54.9 Mn manganese 25	[98] Tc technetium 43	186.2 Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	[237] No.
			mass bol umber	(9)	52.0 Cr chromium 24	95.9 Mo motybdenum 42	183.8 W tungsten 74	Sg seaborglum 106	Nd neodymium 60	238
		Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 3	Pr Pr prascodymium 59	[231] Pa
			relati ato atomic	(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafmium 72	Rf nutherforthum 104	Ce cerium	232
		(3)				88.9 Y yttrium 39	138.9 La* lanthanum 57	[227] Ac* actimium 89	S	•
	7	(2)	9.0 Be beryllium 4	Ag magnesium 12	40.1 45.0 Ca Sc catcium scandium 20 21	Sr Strontium 38	137.3 Ba barium 156	[226] Ra radium 88	*Lanthanide series	
		8	6.9 Li lithium 3	Na sodtum 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* Lanth	