| Write your name here | | | | |--|---------------|-------------------|--------------------------| | Surname | | Other name | s | | Edexcel GCE | Centre Number | | Candidate Number | | Chemistry Advanced Subsidia Unit 3B: Chemistry | ary | Skills I <i>I</i> | Alternative | | Monday 11 January 2010 Time: 1 hour 15 minutes | | | Paper Reference 6CH07/01 | | Candidates may use a calcul | ator. | | Total Marks | ### Instructions - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ## Information - The total mark for this paper is 50. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. ### **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. # Answer ALL the questions. Write your answers in the spaces provided. - 1 Compound A is a white solid that contains one cation and one anion. - (a) A flame test is carried out on compound **A** by mixing the solid with concentrated hydrochloric acid and using a piece of wire to place some of the solution formed in a Bunsen flame. The flame is coloured yellow. - (i) Name a material from which the wire is made. Suggest ONE reason why this material is used. | | (2) | |---|-----| | Name | | | | | | (ii) Identify, by name or formula, the cation present in compound A. | (1) | | (b) When aqueous silver nitrate solution is added to a solution of compound A , a precipitate forms. The cream precipitate dissolves in concentrated aqueous a solution. | | | (i) Name the cream precipitate formed when aqueous silver nitrate is added solution of compound A . | | | | (1) | | (ii) Give the formula of the anion in compound A . | (1) | | (iii) Describe what you would see if the cream precipitate in (b)(i) was left in sunlight. | n | | | (1) | | | | | | Concentrated sulfuric acid is added to compound $\bf A$ in a test tube. Steamy fumes are seen at the mouth of the test tube. | , | |--------|---|------| | | After a few minutes, the contents of the test tube turn brown. A gas is given off which is tested with a piece of filter paper soaked in a solution of aqueous acidified potassium dichromate(VI). The paper turns green. | | | | (i) Identify, by name or formula, the steamy fumes formed initially. | (1) | | | (ii) Describe a further test you could carry out to confirm the identity of the steamy fumes. Give the result of your test. | (2) | | Test | | | | Result | | | | | | | | | (iii) Identify, by name or formula, the substance responsible for the brown colour in the test tube. | | | | the test tube. | (1) | | | (iv) Name the gas which turned the filter paper green. Suggest the type of reaction by which this gas was formed from sulfuric acid. | | | | | (2) | | Gas | | | | Type o | of reaction | | | | | | | | (Total for Question 1 = 12 man | rks) | | | | | | | | | | | | | | 2 | This question is about two isomeric alcohols, X and Y , each with molar mass 60 g mol | 1. | |----|--|-----| | | A solution of potassium dichromate(VI) in dilute sulfuric acid is added to each alcohol. Both alcohols cause the same colour change of the mixture on heating. | | | | (a) A colourless liquid, $\bf B$, is distilled from the mixture containing alcohol $\bf X$. | | | | The liquid ${\bf B}$ forms a red precipitate when it is boiled with Benedict's or Fehling's solution. | | | | Give the displayed formula of liquid ${\bf B}$, and the name of alcohol ${\bf X}$. | (2) | | Li | iquid B | | | Na | ame of alcohol X | | | | (b) A colourless liquid, C, is distilled from the mixture containing alcohol Y. | | | | C does not react when it is boiled with Benedict's or Fehling's solution. | | | | | | | | Give the names of liquid C and alcohol Y . | (2) | | Li | Give the names of liquid C and alcohol Y . | (2) | | | iquid C lcohol Y | | | | iquid C | | | | iquid C lcohol Y 3 This question is about calcium hydroxide, Ca(OH)₂. The solubility of calcium hydroxide in water can be found by titrating a saturated solution of calcium hydroxide with hydrochloric acid of known concentration. (a) Describe how you would make a saturated solution of calcium hydroxide suitable use in this titration. Do not describe the subsequent titration procedure. | e for | |---|--------| | (b) 10.0 cm³ portions of the saturated solution are placed in a conical flask and titrate with 0.0500 mol dm⁻³ hydrochloric acid added from a burette. (i) Name the apparatus used to measure the 10.0 cm³ portions. | ed (1) | | (ii) Suggest a suitable indicator for this titration and state the colour change you would expect to see at the end-point. Indicator | (2) | | Colour change from | | (c) The following results were obtained: | Titration numbers | 1 | 2 | 3 | |---|-------|-------|-------| | Final burette reading / cm ³ | 19.20 | 28.05 | 37.10 | | Initial burette reading / cm ³ | 10.00 | 19.20 | 28.15 | | Titre / cm ³ | 9.20 | 8.85 | | | (i) Fill in the third titre value in the table. | (1) | | |---|-----------------|--| | (ii) Suggest why the first titre should be disregarded. | (1) | | | (iii) Calculate the mean titre. | (1) | | | | cm ³ | | (iv) Calculate the number of moles of hydrochloric acid in the mean titre. (1) (v) The equation for the reaction is $$Ca(OH)_2(aq) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(l)$$ Calculate the number of moles of calcium hydroxide in a 10.0 cm³ portion of the saturated solution. (1) (vi) Calculate the concentration of calcium hydroxide in mol dm⁻³. (1) (vii) Calculate the solubility of calcium hydroxide in g $\,\mathrm{dm}^{-3}$. (1) - (d) The standard enthalpy change for the reaction of calcium hydroxide with hydrochloric acid was found by reacting $0.0100\,\mathrm{mol}$ of solid calcium hydroxide with $50.0\,\mathrm{cm^3}$ of a $1.00\,\mathrm{mol}$ dm⁻³ solution of hydrochloric acid (an excess), in a polystyrene cup. The temperature rose from $21.2\,\mathrm{^{\circ}C}$ to $26.7\,\mathrm{^{\circ}C}$. - (i) Calculate the energy, in joules, transferred in the reaction. Use the expression Energy transferred = mass \times specific heat capacity \times temperature change [Assume density of solution = 1.0 g cm⁻³, specific heat capacity of solution = 4.18 J g⁻¹ °C⁻¹] (1) (ii) Calculate the standard enthalpy change, ΔH^{\oplus} , for the reaction. Include a sign and units in your answer. (2) (iii) Calculate the percentage error in the temperature change caused by an uncertainty of 0.1°C in each thermometer reading. (2) | (iv) | The experiment was repeated using 50.0 cm ³ of a 1.00 mol dm ⁻³ solution of nitric acid instead of the hydrochloric acid. Explain why the temperature change was the same in both experiments. | (1) | |------|--|------| | (v) | The experiment was repeated again using 25 cm ³ of 2.00 mol dm ⁻³ hydrochloric acid. Predict the temperature change in this experiment. | (1) | | (vi) | Which of the experiments in (iv) and (v) gave the least error in the temperature change? Justify your answer. | (1) | | | (Total for Question 3 = 20 mar | ·ks) | **4** An experiment to prepare a sample of 2-chloro-2-methylpropane uses the reaction of 2-methylpropan-2-ol with concentrated hydrochloric acid. $$(CH_3)_3COH + HCl \rightarrow (CH_3)_3CCl + H_2O$$ ## The steps of the experimental procedure are as follows - 1. Place 0.20 mol of 2-methylpropan-2-ol and 70 cm³ of concentrated hydrochloric acid in a large conical flask. - 2. Stopper and shake the flask at intervals, releasing any pressure after each shaking. - 3. Separate the 2-chloro-2-methylpropane from the aqueous solution using a separating funnel. - 4. To the 2-chloro-2-methylpropane in the separating funnel, add 20 cm³ of sodium hydrogencarbonate solution. Shake the separating funnel, carefully releasing carbon dioxide frequently. - 5. Separate the 2-chloro-2-methylpropane and repeat the washing with sodium hydrogenearbonate solution until this washing step is no longer necessary. - 6. Transfer the 2-chloro-2-methylpropane to a small conical flask and add a suitable drying agent. - 7. Filter off the drying agent, collecting the 2-chloro-2-methylpropane into a distillation flask. Heat the flask, collecting the fraction that distils off between 50 °C and 52 °C. #### Data | Property | 2-methylpropan-2-ol | 2-chloro-2-methylpropane | |----------------------------------|---------------------|--------------------------| | Density / g cm ⁻³ | 0.789 | 0.842 | | Molar mass / g mol ⁻¹ | 74.1 | 92.6 | | Boiling temperature / °C | 82.4 | 50.8 | | (a) Calculate the volume of 2-methylpropan-2-ol used in the preparation. | (1) | |---|-----| | | | | (b) Draw a diagram of a separating funnel that could be used in step 3. Label the 2-chloro-2-methylpropane layer. | (2) | | | | | | | | | | | (c) (i) Suggest why the product is washed with sodium hydrogencarbonate solution (step 4). | (1) | | (ii) How would you know that no further washing with sodium hydrogencarbonate was necessary? | (1) | | | | | (d) Suggest a suitable drying agent to dry the 2-chloro-2-methylpropane (step 6). | | |---|--| |---|--| (1) (e) Draw a labelled diagram of the apparatus you would use to carry out the final distillation (step 7). (4) | | (1) stion 4 = 14 marks) PER = 50 MARKS | |---|--| | (ii) Give the expected result of this test. | (1) | | | | | | (1) | | g) A suitable chemical test for the chlorine in a chloroalkane, such as 2-chloro-2-methylpropane, is to add the chloroalkane to a mixture of nitrate solution and ethanol.(i) Suggest why ethanol is added to the mixture. | aqueous silver | | | | | | | | | | | | | | | | | | (2) | | | (2) | **BLANK PAGE** | | 0 (8) | (18)
4,0
He
hetium
2 | 20.2
Ne neon 10 | 39.9
Ar
argon
18 | 83.8
Krypton
36 | Xe xenon 54 | [222]
Rn
radon
86 | orted | = | | |--------------------------------|-------|----------------------------------|---|----------------------------------|--|------------------------------------|-------------------------------------|---|--------------------------------------|--------------------| | | 1 | (21) | 19.0
F
fluorine | 35.5
Cl
chlorine
17 | 79.9
Br
bromine
35 | 126.9
 | [210] At astatine 85 | реел гер | 175
Lu
lutetium
71 | [257]
Lr | | | 9 | (16) | 16.0
Oxygen
8 | 32.1
S
sulfur
16 | 79.0
Selentum
34 | 127.6 Te tellurium 52 | [209] Po potonium 84 | 116 have I | 173
Yb
ytterbium
70 | [254]
No | | | Ŋ | (15) | 14.0
N
nitrogen
7 | 31.0 P | As
arsenic
33 | Sb
antimony
51 | 209.0
Bi
bismuth
83 | Elements with atomic numbers 112-116 have been reported but not fully authenticated | 169
Tm
thulium
69 | [256]
Md | | | 4 | (47) | 12.0
C
carbon
6 | Si
Sificon
14 | 72.6
Ge
germanium
32 | 5.811
Fin
50 | 207.2
Pb
lead
82 | atomic nur
but not f | 167
Er
erbium
68 | [253]
Fm | | | m | (13) | 10.8
B
boron
5 | 27.0
Al
aluminium
13 | Ga
gallium
31 | Indium 49 | 204.4 Tl thallium 81 | ents with | 165
Ho
hotmtum
67 | [254]
Fe | | The Periodic Table of Elements | | | | (12) | | Cd
Cadmium
48 | 200.6
Hg
mercury
80 | Elem | 163 Dy dysprosium 66 | [251] | | | | (9) (11) | | | 63.5
Cu
copper
29 | 107.9
Ag
sliver
47 | 197.0
Au
gold
79 | Rg
roentgenium
111 | 159
Tb
terbium
65 | [245]
RV | | le of | | | | | 58.7
Ni
nicket
28 | 106.4
Pd
palladium
46 | Pt
Pt
platinum
78 | [271] Ds damstadtäun 110 | 157
Gd
gadolinium
64 | [247] | | c Tab | | | | | S8.9
Co
cobalt
27 | Rh
rhodium
45 | 192.2
 | [268]
Mt
meitnerium
109 | 152
Eu
europium
63 | [243] | | riodi | | 1.0
Hydrogen | | (8) | 55.8
Fe
iron
26 | Ru
Ru
ruthenium
44 | 190.2
Os
osmium
76 | [277]
Hs
hassium
108 | 150
Sm
samarium
62 | [237] [242] | | The Pe | | 0 | | | 54.9
Mn
manganese
25 | [98] Tc technetium 43 | 186.2
Re
rhenium
75 | [264]
Bh
bohrium
107 | [147] Pm promethium 61 | [237]
No. | | | | | mass
bol
umber | (9) | 52.0
Cr
chromium
24 | 95.9
Mo
motybdenum
42 | 183.8
W
tungsten
74 | Sg
seaborglum
106 | Nd
neodymium
60 | 238 | | | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | (5) | 50.9
V
vanadium
23 | 92.9
Nb
niobium
41 | 180.9
Ta
tantalum
73 | [262] Db dubnium 3 | Pr
Pr
prascodymium
59 | [231]
Pa | | | | | relati
ato
atomic | (4) | 47.9
Ti
titanium
22 | 91.2
Zr
zirconium
40 | 178.5
Hf
hafmium
72 | Rf
nutherforthum
104 | Ce
cerium | 232 | | | | (3) | | | | 88.9
Y
yttrium
39 | 138.9
La*
lanthanum
57 | [227]
Ac*
actimium
89 | S | • | | | 7 | (2) | 9.0
Be
beryllium
4 | Ag
magnesium
12 | 40.1 45.0 Ca Sc catcium scandium 20 21 | Sr
Strontium
38 | 137.3
Ba
barium 156 | [226] Ra radium 88 | *Lanthanide series | | | | | 8 | 6.9
Li
lithium
3 | Na
sodtum
11 | 39.1
K
potassium
19 | 85.5
Rb
rubidium
37 | 132.9
Cs
caesium
55 | [223]
Fr
francium
87 | * Lanth | |