edexcel

Mark Scheme (Results)
Summer 2015

GCE Chemistry (6CH01/01)
The Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code US041075*
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	C		1

Question			
Number	Correct Answer	Reject	Mark
$\mathbf{3}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	C		1

Question Number	Correct Answer	Reject	Mark
5	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (a)}$	C		1

Question Number	Correct Answer	Reject	Mark
6(b)	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (c)}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7 (a)}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7 (b)}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4 (a)}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4 (b)}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	A		1

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a)}$	(Atoms/elements/isotopes with) the same number of protons (and electrons) and different numbers of neutrons ALLOW answers in terms of bromine isotopes, 35 protons and 44 or 46 neutrons.	1	
	IGNORE different number of nucleons IGNORE same atomic number but different mass number		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i)}$	(High energy) electrons are 'fired' at/ Electrons bombard/Use of an 'electron gun' (1)	Magnetic field (0)	2
	(result in) loss of electron/electrons (thus forming an ion) This can be shown in an equation $\mathrm{X}+\mathrm{e} \rightarrow \mathrm{X}^{+}+2 \mathrm{e} \quad$ OR $\quad \mathrm{X} \rightarrow \mathrm{X}^{+}+\mathrm{e} \mathrm{(1)}$ Stand alone marks	Forms an anion	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i i)}$	Magnet/Magnetic field/Electromagnet	Electric field Magnetic shield Magnetic radiation	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i i i) ~}$	Particles (of gas/air) will interfere with the movement of the ions/collide with the ions/deflect ions OR Additional peaks will be detected/peaks at incorrect m/e IGNORE references to chemical reactions	Atoms for ions	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c)}$	Marking point 1 Twin peaks of about the same height at 79 (1) and 81		4
Marking point 2 (1) Twin peaks of about the same height at 158 and 162			
Marking point 3 Peak at 160	Marking point 4 Peak at 160 approximately twice the height of the peaks at 158 and 162		
IGNORE Small peak at 80 which could be due to Br ${ }_{2}^{2+}$ (79-81) In MPs 1 and 2 penalise height difference once only			

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 7 (d)}$	$\left(\frac{(47 \times 79)+(53 \times 81)}{100}\right)=80.06$	(1)		2
	(answer =) 80.1	(1)	Incorrect units of mass/\% Correct final answer without working scores (2)	
	No TE on incorrect expression			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}(\mathbf{e})$	The $(\mathrm{m} / \mathrm{e})$ value would be halved	Peak half as high	1

Question Number	Acceptable Answers	Reject	Mark
17(f)(i)	Any two from: Sample kept sealed/ tamper-proof Sample stored and labelled clearly Sample stored in preservative/sample tested immediately after being taken Sample kept under temperature control Monitor sample is being taken from named competitor Check that other non-banned substances do not give similar mass spectrometry result Analysis repeated (to confirm result)/ Multiple samples taken/ Sample divided into two and tested at different times/ locations Container/equipment sterile/cleaned Run a control sample/ compare to a sample without drugs Sampling to take place immediately after event Precautions need to be actions/ activities that are carried out and not just a statement that something must or must not happen but how this is ensured or prevented There will likely be other suggestions in addition to those given above which can be given credit if they are reasonable actions	References to medication being taken Just 'no contamination'	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (f) (i i)}$	Health concerns/depression/bursts of anger/ acts of violence/heart attack/strokes/liver damage/masculine features in women/ harmful side effects Allow any suitable health concern	Just ‘Fear of being banned/prosecuted'	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (g)}$	Any suitable use such as:	Alcohol testing	1
	RAM/RMM calculations/Relative isotopic mass calculations/Space probes/	Pharmaceutical purity/testing of new pharmaceuticals/Age of rocks from Helium content/ Identification of unknown substances/ Carbon dating/Radioactive dating	C-12 dating

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a)}$	$\mathrm{C}_{n} \mathrm{H}_{2 n}$ ALLOW any letter for n	$\mathrm{C}_{2} \mathrm{H}_{2 n}$ $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$	1

Question Number	Acceptable Answers	Reject	Mark
18(b)	Either one of the following options: $\begin{aligned} & \mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br} \\ & \text { 1,2-dibromoethane } \end{aligned}$ OR $\mathrm{CH}_{3} \mathrm{CHCH}_{2}+\underset{\text { 1,2-dibromopropane }}{\mathrm{Br}_{2}} \underset{\substack{ \\\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br}}}{ }$ Marking Point 1 Correct reactant - ethene or propene Marking Point 2 Correct product from the number of carbon atoms in the reactant Marking Point 3 Correct name from the number of carbon atoms in the reactant IGNORE punctuation on product ALLOW displayed/ skeletal formulae Penalise molecular formula of product only No TE on name if product incorrect		3

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 8 (c) (i)}$	(Error 1) the dipole on the chlorine molecule should be the other way round (Error 2) the arrow should be going from the double bond (to the chlorine)/electrons move from the double bond to the chlorine (1)		3		
(Error 3) the chlorine should have a negative charge (and a lone pair)	(1) Chlorine molecule			\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (c) (i i)}$	Because tertiary carbocation is more stable (than a primary carbocation)	Just Secondary carbocation	1
	OR the positive carbon has more positively- inductive/ electron-releasing alkyl groups (to help stabilization than the other carbon of the double bond)	IGNORE references to carbon only having three bonds or being electron deficient	

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 8 (d)}$ | OR | | 2 |
| | (1) | | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (e)}$	Same molecular formula/same number of atoms/same amount of each element but different (Structural) arrangement (of atoms)/ structure/ structural formulae/ displayed formulae/ skeletal formulae	'in space'	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (f) (i)}$	Ultraviolet (radiation)/ UV (radiation) / (Sun) light	High temperature	1

Question Number	Acceptable Answers	Reject	Mark
18(f)(ii)	$\mathrm{Cl}-\mathrm{Cl} \rightarrow 2 \mathrm{Cl} \bullet$ OR $\begin{equation*} \mathrm{Cl}-\mathrm{Cl} \rightarrow \mathrm{Cl} \bullet+\mathrm{Cl} \bullet \tag{1} \end{equation*}$ Correct use of curly half / 'fish-hook' arrows (1) $\begin{aligned} & \square-\mathrm{Cl} \rightarrow 2 \mathrm{Cl}^{\circ} \\ & \text { OR } \\ & \square-\mathrm{Cl} \rightarrow \mathrm{Cl}^{\circ}+\mathrm{Cl}^{\circ} \end{aligned}$ Curly half arrows can start from anywhere on the bond and extend beyond the Cl The half arrows can be above or below the bond or a combination of the two.		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (f) (\text { iii) }}$	(First propagation step) $\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{Cl} \bullet \rightarrow \mathrm{HCl}+\mathrm{C}_{4} \mathrm{H}_{7} \bullet$ (Second propagation step) $\mathrm{C}_{4} \mathrm{H}_{7} \bullet+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{Cl}+\mathrm{Cl} \bullet$ The position of \bullet is not essential Penalise lack of \bullet once only	Reference to $\mathrm{H} / \mathrm{H} \bullet$ scores (0)	2
	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (f) (i v) ~}$	Homolytic/ homolytic fission/ homolytic bond fission		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (f) (v)}$	Marking point 1 Two free radicals are combining/reacting with each other/suitable termination equation (1)		2
	Marking point 2 The product is a stable species/No free radicals produced/ The product is not a free radical/ Concentration of free radicals decreases / lowers the number of radicals (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (g)}$	Further substitution/polysubstitution can occur OR		1
	Other products such as $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Cl}_{2} / \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Cl}_{3}$ COMMENT: ALLOW Forms $\mathrm{C}_{4} \mathrm{Cl}_{8}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a)}$	Drawing must have at least 1 circle around each chlorine atom OR	$\mathbf{1}$	
	(O) Random dots to indicate electron density around both chlorine atoms and a concentrated area between the atoms		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (b)}$	(Electrostatic) attraction between oppositely charged ions IGNORE comments on the formation of ions		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
19(c)	Marking point 1		3
	Either		
	Diagram of U-tube / beaker with electrodes and sodium chloride solution	Sodium electrode	
	OR		
	Diagram of microscope slide with electrodes attached and either filter paper soaked in sodium chloride solution or dampened/wet filter paper on the top of the slide with the sample added (in the centre)		
	Marking point 2 Suitable circuit		
	If electrodes labelled \pm or named they must be consistent with the cell For example the following would not score this marking point:		
	Marking point 3 Ammeter/ light bulb showing conductivity OR Chlorine (gas) evolved/ Test for chlorine/hydrogen (gas) evolved/Test for hydrogen	Sodium formed	
	ALLOW any other reasonable electrolysis apparatus that would work to show ionic bonding.		

	evolved is stated then it must have the correct sign or charge, although it is not necessary to name or give a sign for the electrode, ie chlorine at the electrode with a positive sign and hydrogen at the electrode with a negative sign. Use of other ionic compounds can only score MP2		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (d) (i)}$	Correct dot and cross diagram with charge		$\mathbf{1}$
	$\left.\begin{array}{lll}\text { Example } \\ \mathrm{XX} & \mathrm{Cl} & \mathrm{X} \bullet \\ \mathrm{XX}\end{array}\right]-$		
	ALLOW all dots or all crosses IGNORE any sodium dot and cross diagram		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (d) (i i)}$	(Isoelectronic example) $\mathrm{S}^{2-/ \mathrm{S}^{-2} / \mathrm{P}^{3-} / \mathrm{P}^{-3}}$	$\mathrm{Si}^{4-} / \mathrm{K}^{+} / \mathrm{Ca}^{2+} / \mathrm{Ar}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (e)}$	Marking point 1 Sodium conducts when solid (and liquid/molten) Marking point 2 (1)	Sodium in solution/dissolved Sodium chloride conducts when molten (and in solution but not as a solid)	$\mathbf{3}$
	Marking point 3 Charge carriers in sodium are (delocalised) electrons but ions in sodium chloride		
OR Conductivity in sodium due to the movement of (delocalised) electrons but the movement of ions in sodium chloride (1)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a)}$	$(50 \times 4.18 \times 15.5=) 3239.5(\mathrm{~J})$		$\mathbf{1}$
	IGNORE any sign given ALLOW 3.2395 kJ (units are essential for this answer)		

Question Number	Acceptable Answers	Reject	Mark
20(b)	$\begin{gather*} (1.46 \div 56.1=) 0.026025 . .(\mathrm{mol}) \tag{1}\\ (\Delta H=3.2395 \div 0.026025=-124.47 \ldots) \\ -124 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{gather*}$ OR $\begin{equation*} (1.46 \div 56.1=) 0.0260(\mathrm{~mol}) \tag{1} \end{equation*}$ $\begin{align*} &(\Delta \mathrm{H}=3.2395 \div 0.0260=-124.596154) \\ &-125 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{align*}$ ALLOW the use of $\mathrm{CaO}=56$ $=\left(-124.255 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)-124 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ALLOW TE from answer to (a)	+ sign	2

Question Number	Acceptable Answers	Reject	Mark
20(c)(i)	Any three reasons from: Heat/energy loss (to the surroundings / to the apparatus)/ Lack of lid/no lid/ heat capacity of the cup not taken into account/heat capacity of the cup is not zero Inaccuracy of thermometer/temperature readings Impure $\mathrm{CaO} /$ Absorbed moisture from the air Heat capacity is not 4.18 / the mass of solution is not $50 \mathrm{~g} /$ density of solution is not $1 \mathrm{~g} \mathrm{~cm}^{-3}$ IGNORE non-standard conditions/ stirring/human error/incomplete transfer of solid	Incomplete reaction Just 'heat lost to the thermometer'	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (c) (i i)}$	Marking point 1 $(Q=(250 \times 4.18 \times 25)=26125(\mathrm{~J})$ OR $(26125 \div 1000=) 26.125(\mathrm{~kJ})$ Marking point 2 $(\mathrm{n}=26.125 \div 196.8=) 0.132749(\mathrm{~mol})$ Marking point 3 Mass $=(0.132749 \times 56.1=)$ $7.4472189=7.45(\mathrm{~g})$ ALLOW $(0.132749 \times 56=) 7.433944$ $=7.43(\mathrm{~g})$ Correct answer alone scores 3 marks	(1)	3

Question Number	Acceptable Answers	Reject	Mark
20(d)(i)	Marking point 1 Arrow downwards from CaCO_{3} to the box, with $2 \mathrm{HCl}((\mathrm{aq}))$ alongside Marking point 2 Correct entities and states in box $\begin{equation*} \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \tag{1} \end{equation*}$ Marking point 3 Correct use of Hess' Law ($\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{CaCo3}}-\Delta \mathrm{H}_{\mathrm{CaO}}$) e.g. $\quad-18.8--196.8=$ Marking point 4 $\Delta \mathrm{H}=+178\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		4

Question Number	Acceptable Answers	Reject	Mark
20(d) (ii)	Products on line below $\mathrm{CaCO}_{3}(\mathrm{~s})$ with both arrows going down from CaCO_{3} and CaO Example ALLOW the word 'products' for formulae		1

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

