edexcel ${ }^{\text {:iti }}$

Mark Scheme (Results)

June 2014

International GCE Chemistry (6CH01/01R)
Unit 1: The Core Principles of
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

```
www.edexcel.com/contactus
```


Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code US038309*
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	D		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	A		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (a)}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (b)}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (c)}$	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	C		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8}$	D		1

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (i)}$	B acceleration	(1)	B just electric field
	C deflection	(1)	C just magnetic field
	Allow B ions are accelerated/ accelerating C ions are (being) deflected		

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	$\begin{align*} & \left(\mathrm{A}_{\mathrm{r}} \text { for } \mathrm{K}\right)=(39 \times 0.9322)+(40 \times \\ & 0.0012)+(41 \times 0.0666) \text { or a } \\ & \text { correct fraction using percentages } \tag{1}\\ = & 39.1344=39.13 \tag{1} \end{align*}$ Correct answer without working scores 2 Max 1 if not to 2 decimal places Second mark dependent on first IGNORE Units of any kind (e.g. ' g ', ' $\mathrm{g} \mathrm{mol}{ }^{-1}$, 'amu', etc.)		2

Question	Acceptable Answers				Reject	Mark
19(a)(iii)						1
	Isotope	Electrons	Protons	Neutrons		
	${ }^{39} \mathrm{~K}$	19	19	20		
	${ }^{41} \mathrm{~K}$	19	19	22		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a)}$ (iv)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$ Inlly correct	1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (v)}$	(Position in the Periodic Table) depends upon atomic number / proton number OR Ar (atom) has (one) fewer proton(s) (than K atom)		1
	OR K (atom) has (one) more proton(s) (than Ar atom)	OR K has atomic number 19 (whereas) Ar has atomic number 18	OR Ar has 18 protons, K has 19 protons IGNORE 'Elements are not arranged in order of (relative) atomic mass' IGNORE Mention of numbers of electrons / numbers of shells (of electrons) IGNORE Arranged in vertical groups in accordance to properties / argon is a noble gas

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a)}$ $\mathbf{(v i)}$	One fewer shell of electrons (1) Electrons in the ion are held more tightly		2
OR Same number of protons attracting fewer electrons	OR Less repulsion between (remaining) electrons	(1)	
IGNORE References to effective nuclear charge / charge density			

Question Number	Acceptable Answers	Reject	Mark
19(b)	Regular lattice of singly-positively charged (potassium) ions Delocalised electrons / sea of electrons / mobile electrons e.g. Accept other regular arrangements Unlabelled diagram max (1)		2

Question Number	Acceptable Answers	Reject	Mark
19(c)(i)	First mark:- Makes mention of energy/enthalpy/(heat) energy/heat (change) AND to remove an electron Second mark: one mole/ 1 mol Third mark: Makes mention of gaseous atom(s) ALTERNATI VE ANSWER Energy change per mole for $\begin{equation*} X(g) \rightarrow X^{+}(g)+e^{(-)} \tag{1} \end{equation*}$ One mark for species One mark for correct state symbols Mark independently IGNORE any references to standard conditions	"Energy given out..." for first mark J ust 'gaseous element'/ 'gaseous substance'	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c) (i i)}$	Potassium is E		(1)
	Alkali metals always have the lowest first ionization energy in their period OR It follows a noble gas/ an element with very high first ionization energy OR Ionization energy falls (significantly) at the start of a (new) period / Ionization energy falls (significantly) after D	(1)	

Total for Q19 = 16 marks

Question Number	Acceptable Answers	Reject	Mark
20(a)	$1^{\text {st }}$ Mark $\mathrm{Mol} \mathrm{CuO}=(5.60 / 79.5)=0.07044 / 0.0704$ / 0.070 / 0.07 $2^{\text {nd }}$ Mark Mol of nitric acid $=(50 \times 2.50 / 1000)=$ 0.125 $3^{\text {rd }}$ Mark Reacting ratio $=2: 1$ and nitric acid less than double moles of copper oxide/ Reacting ratio $=2: 1$ and copper oxide more than half of moles of nitric acid OR moles acid needed to react with all CuO $=(2 \times 0.070=) 0.140$ which is more than 0.125 OR 0.125 mol nitric acid can only react with 0.0625 mol CuO		3

Question Number	Acceptable Answers	Reject	Mark
20(b)	$\mathbf{1}^{\text {st }}$ Mark	4.24\% scores (0) overall	3
	Moles product $=0.5 \times 0.125=0.0625$		
	Allow TE from moles HNO_{3}		
	$2^{\text {nd }}$ Mark		
	Theoretical yield $=(0.0625 \times 295.6=)$		
	$18.475 \mathrm{~g}$		
	Allow ECF on multiplying moles product by		
	295.6		
	$3^{\text {rd }}$ Mark		
	$\%$ yield $=(12.52 / 18.475 \times 100)=67.767 /$		
	$67.8 / 68$		
	Alternative route for $2^{\text {nd }}$ and $3^{\text {rd }}$ Marks ${ }^{(1)}$		
	$\begin{equation*} \text { mol product }=(12.52 / 295.6)=0.04235 \tag{1} \end{equation*}$		
	$\%$ yield $=(0.04235 / 0.0625 \times 100=67.767$		
	$/ 67.8 / 68$		
	(1)		
	TE from (a)		
	If moles of product taken as 0.125 , final answer $=33.88 \%$ which scores (2)		
	TE for calculation based on moles of		
	copper(II) oxide which gives an answer		
	between 60.128% and 60.506%		
	$\boldsymbol{\operatorname { m a x }}(2)$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (c)}$	Some product remains in solution/ some product does not crystallize	Incomplete reaction Just experimental error	1
	Allow loss of material on transferring, if explained, such as Crystals remain in / on filter paper 'Spitting' (of solution on heating) IGNORE References to impure reactants	'solution evaporates'	

Question Number	Acceptable Answers	Reject	Mark
20(d)(i)	Covalent bond: (shared pair of electrons using) one electron from each atom (1)		2
	Dative covalent bond: (shared pair of electrons using) two electrons from same atom		

Question Number	Acceptable Answers	Reject	Mark
20(d)(ii)	Double bond between N and one oxygen atom Single bond between N and 0* Dative single bond between N and one O atom Max 2 if any lone pair electrons are missing		3

Total for Q20 = 12 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a)}$	(Contains) only (C—C) single bonds/ only σ bond(s) OR (Contains) no (C=C) double bond(s)/no triple bond(s) OR Cannot undergo addition (reactions) ALLOW Has maximum number of hydrogen atoms / has maximum amount of hydrogen /can form no more bonds / no pi-bonds. IGNORE references to alkanes	2	
	(Compound of) carbon and hydrogen ONLY/ ENTI RELY/ PURELY	"Mixture of carbon and hydrogen only"	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i)}$	Measure mass (of cylinder) before and after (burning)		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i i)}$	Energy transferred $=(100 \times 4.18 \times 27.1=)$ $11327.8(\mathrm{~J}) / 11.328 \mathrm{~kJ}$ Ignore SF except 1 SF		1

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	$\begin{equation*} \text { Mol propane }=0.33 / 44=0.0075 \tag{1} \end{equation*}$ $\begin{align*} & \Delta \mathrm{H}_{\mathrm{c}}=(-11.3278 / 0.0075)=(-1510.4) \\ & =-1510\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Sign and 3SF Allow TE from b(ii)		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i v) ~}$	Incomplete combustion Allow carbon monoxide forms soot forms	Evaporation of water Transfer losses Not under standard conditions	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i i)}$	$\left.\begin{array}{l}\mathrm{Z}=(6 \times \mathrm{C}=\mathrm{O}+8 \times \mathrm{O}-\mathrm{H}=4830+3712) \\ =(+) 8542(\mathrm{~kJ} \mathrm{~mol}\end{array}\right)$	1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i i i)}$	$\Delta \mathrm{H}_{\mathrm{x}}=6490-8542=-2052\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		1
	Allow TE from 21(c)(ii)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i v)}$	Bond energy calculation based on $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ OR $\Delta \mathrm{H}_{\mathrm{c}}{ }^{e}$ based on $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	1	
	Allow Bond energy varies with environment/ mean bond energies do not equal actual bond energies for these reactants Ignore reference to standard conditions		1

Total for Q21 = 12 marks

Question Number	Acceptable Answers	Reject	Mark
22(a)	UV light/ ultraviolet light/ (sun) light / UV radiation IGNORE References to heat and or pressure.		1

Question Number	Acceptable Answers	Reject	Mark
22(b)	Species/ particle with unpaired electron Allow atom	Single electron	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (c) (i)}$	Cl-Cl bond is weaker than a C-H bond / breaks more easily than a C-H bond OR Reverse argument		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (c) (i i) ~}$	$\mathrm{CHCl}_{3}+\bullet \mathrm{Cl} \rightarrow \bullet \mathrm{CCl}_{3}+\mathrm{HCl}$	(1)	
	$\bullet \mathrm{CCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\bullet \mathrm{Cl}$		
	Max(1) if 2 equations based on methane.		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (c) (i i i)}$	$\bullet \mathrm{CCl}_{3}+\cdot \mathbf{C l} \rightarrow \mathrm{CCl}_{4}$		1

Question Number	Acceptable Answers	Reject	Mark
22(d)	100% as only one product / Just "atom economy is high(er)" / no mention of 100%	1	
	100% as no by product(s) /		

Total for Q22 = 7 marks

Question	Acceptable Answers	Reject	Mark	
Number		(1)		2
$\mathbf{2 3 (a) (i)}$	σ bond between C atoms	(1)		
	π bond above and below σ bond			

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Good overlap of s orbitals in sigma bonds (1) p orbitals are parallel so poor overlap when π bonds form		2
	OR (1) Overlap of orbitals in sigma bond is along the line between the two nuclei whereas, in the π bond, there is sideways overlap		
Can be shown on a diagram			

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	 E-but-2-ene Allow angles of 90° between $\mathrm{C}=\mathrm{C}$ and other bonds. Allow displayed or skeletal formula		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b) (i i)}$	One C on the double bond has two of the same atoms/ two hydrogen atoms attached to it		1
OR C on one end of double bond is not attached to two different atoms or groups Ignore references to restricted rotation about the C=C double bond			

Question Number	Acceptable Answers	Reject	Mark
23(b)(iii)	(Bromine water goes from brown/ redbrown / yellow/ orange to) colourless OR (Bromine water is) decolorised Accept any orientation Allow addition of two Br atoms Allow un-displayed CH_{3} and OH groups Allow skeletal or structural formula	To 'clear’ Molecular formula	2

Question Number	Acceptable Answers	Reject	Mark
23(c)	(Colour change purple/ purple-pink / pink to) colourless OR (KMnO_{4} is) decolorised Accept any orientation Allow un-displayed $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and OH groups, skeletal or structural formula	To clear Molecular formula	2

Question Number	Acceptable Answers	Reject	Mark
23(d)(i)	(2-) methylprop(-1)ene	2- methylprop-2-ene	1

Question Number	Acceptable Answers	Reject	Mark
23(d)(ii)	 Allow methyl groups on C2 and C3 Allow complete polymer formula with square brackets and n		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e)}$	Not sustainable as (polybutene) not made from a renewable resource / Not sustainable as made from non- renewable resource / not sustainable as made from crude oil / Not sustainable as crude oil is not renewable / Not sustainable as crude oil finite resource IGNORE References to non-biodegradability / long-lasting in use	1	

Total for Q23 = 13 marks
TOTAL FOR PAPER = $\mathbf{8 0}$ MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

