edexcel

Mark Scheme (Results)

Summer 2014

IAL Chemistry (WCH01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA038347*
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to
complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Mark
$\mathbf{1}$	C	$\mathbf{1}$
Question Number Correct Answer Mark $\mathbf{2}$ D $\mathbf{1}$ Question Number Correct Answer Mark $\mathbf{3}$ B $\mathbf{1}$		

Question Number	Correct Answer	Mark
$\mathbf{4}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{5}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{9}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	D	$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 ~ (a) (i)}$	Penalise use of chlorine once only in Q21(a)(i), (ii) and (iii) IGNORE lone pairs of electrons, even if incorrect in Q21(a)(i), (ii) and (iii)	Br	$\mathbf{1}$
	ALLOW one slip in the formula of the element if it is correctly given elsewhere in the answer e.g B for Br $\mathrm{Br}_{2} \rightarrow \mathrm{Br} \bullet+\mathrm{Br} \bullet$ / $\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br} \bullet$	Ignore position of dot Ignore state symbols and curly arrows even if incorrect	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$	$\mathrm{Br}_{2} \rightarrow \mathrm{Br}^{+}+\mathrm{Br}^{-}$	$\mathbf{\delta}^{+} / \mathbf{\delta}^{-}$for the + or -	$\mathbf{1}$
$\mathbf{(a) (i i)}$	Ignore state symbols and curly arrows even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 21 \\ & \text { (a) (iii) } \end{aligned}$	(free radical) Br - NOTE: No TE, except Cl• Penalise omission of the dot only once in (a)(i) and (a)(iii) (electrophile) $\mathbf{B r}^{+}$ NOTE: No TE, except Cl^{+}	Br	2

Question Number	Acceptable Answers	Reject	Mark
21 (b)(i)	 Isomers can be in any order ALLOW skeletal or structural formulae	Any branched-chain isomers	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$ (b)(ii)	Corrosive / toxic / poisonous Allow correct symbols for corrosive or toxic / poisonous	Flammable / 'naked flames'	$\mathbf{1}$
	IGNORE harmful / dangerous / irritant / acidic / volatile / any references to state of HBr IGNORE Any precautions taken, EXCEPT those related to flammability		

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 21 \\ & \text { (b) (iii) } \end{aligned}$	First mark Calculation of the $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Br} \mathrm{M}_{\mathrm{r}}$ value and the total of the product Mr EXPECTED 164.9 AND 245.8 ALLOW 165 AND 246 Second mark EXPECTED $\begin{aligned} & \frac{164.9}{245.8}(x \text { 100\%) } \\ & =67.08706265(\%) \\ & =67.1(\%) \text { to } \mathbf{3} \text { s.f. } \end{aligned}$ ALLOW $\begin{aligned} & \frac{165}{246}(x 100 \%) \\ & =67.07317073(\%) \\ & =67.1(\%) \text { to } 3 \text { s.f. } \end{aligned}$ ALLOW TE from any incorrect M_{r} value(s) provided answer is not greater than 100\% Answer MUST be rounded correctly to 3 s.f. for the second mark Correct answer with no working		2

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 1} \mathbf{(c) (i)}$	$\mathrm{CH}_{4}+\mathrm{F}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{HF}$ IGNORE state symbols, even if incorrect	Cl_{2}	$\mathbf{1}$		
"FI" if used more than once				\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
21 (c)(ii)	NOTE		2
	Allow reverse argument throughout		
	$\mathbf{1}^{\text {st }}$ Mark		
	Fluorine / F (atom is) smaller (than a Cl atom)	F_{2} / 'fluorine molecule'	
	(1)		
	$2^{\text {nd }}$ Mark		
	Any ONE of:-		
	(so expect) F-F bond to be shorter (than the $\mathrm{Cl}-\mathrm{Cl}$ bond)	Mention of 'Intermolecular forces' (no $\mathbf{2}^{\text {nd }}$ mark)	
	OR		
	F-F bonding electrons / bond pair / / shared pair closer to (both) nuclei		
	OR		
	(so) attraction between nuclei and bonding electrons / bond pair /		
	shared pair expected to be stronger		
	IGNORE		
	Any references to the strengths of the F-F and/or $\mathrm{Cl}-\mathrm{Cl}$ bonds		
	Any references to the 'repulsion between nuclei'		
	Any references to 'shielding' / 'Charge density' / 'Electronegativity' / outer electrons		

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 21 \\ & (c)(i i i) \end{aligned}$	Shared pair of electrons shown The remaining six electrons on each F atom NOTE Can be dots or crosses - only total number of electrons matters Circles not required IGNORE Two inner-shell electrons ALLOW ' Fl ' or F symbol missing		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$	'Repulsion between electrons' scores	Just repulsion between bonding / shared electrons	$\mathbf{2}$
	(1) (iv)	BUT	
	'Repulsion between lone pairs (of electrons)' scores (2) ALLOW 'Non-bonding electrons' for lone pairs		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(v)	UV (light) / (sun) light / heat / energy required to break $\mathrm{Cl}-\mathrm{Cl}$ bond OR UV (light) / (sun) light / heat / energy required to form $\mathrm{Cl} \cdot$ OR $\mathrm{F}-\mathrm{F}$ requires less energy to break OR $F-F$ requires less energy to form F. IGNORE Just F_{2} more reactive (than Cl_{2}) Just $\mathrm{F}-\mathrm{F}$ bond is weaker (than $\mathrm{Cl}-\mathrm{Cl}$) Just F-F bond energy is lower (than $\mathrm{Cl}-\mathrm{Cl})$		1

Question Number	Acceptable Answers	Reject	Mark
21 (d)	Mark independently First mark: For both arrows in initial step Allow upper arrow as in diagram or directly to Br atom Second mark: Carbocation intermediate Third mark: Arrow from anywhere on the bromide ion to the C or to the + sign on the intermediate Lone pair(s) on Br^{-}not required	Half-arrow(s) I ncorrect polarities Full-charges on Br_{2} Half-arrow(s) $\mathbf{\delta}^{-}$instead of the full - sign on the Br^{-}	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (e) (i)}$			$\mathbf{1}$
Diagram clearly shows that H atoms are diagonal to each other in the $\mathrm{E}-$ isomer/correct relative positions of hydrogen atoms and ethyl groups ALLOW Skeletal or displayed formula			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (e) (i i) ~}$	EITHER		$\mathbf{1}$
	Rotation around C-C bond (in product molecule)	OR Double bond is broken so rotation (is now possible)	ALLOW Same carbocation / intermediate formed (so product is the same) IGNORE Comments about optical isomerism

(Total for Question 21 = 23 marks)

Question Number	Acceptable Answers	Reject	Mar k
22(a)	(The energy / enthalpy change / released that accompanies the formation of) one mole of $\mathrm{a}(\mathrm{n}$ ionic) compound ALLOW as alternative for compound: lattice / crystal / substance / solid / product / salt from (its) gaseous ions IGNORE References to 'standard conditions' or any incorrect standard conditions ALTERNATI VE RESPONSE If no mark(s) already awarded from above, can answer by giving:- energy change per mole / enthalpy change per mole $\begin{equation*} \mathrm{Li}^{+}(\mathbf{g})+\mathrm{F}^{-}(\mathbf{g}) \rightarrow \mathrm{LiF}(\mathrm{~s}) \tag{1} \end{equation*}$ NOTE If lattice energy of dissociation is given (e.g. "energy required to break down 1 mol of an ionic lattice into its gaseous ions") max (1) for the 2nd scoring point 'gaseous ions'	‘energy required’ / ‘energy needed' / 'energy it takes' 'from one mole of gaseous ions' (no 2nd mark) Just 'from gaseous elements' (no 2nd mark)	2

Question Number	Acceptable Answers	Reject	Mar k
22(b)(i)	Box 4 $\mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}(\mathrm{g})+\mathrm{e}^{-}$ $\left(\mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g})\right)$ Box 3 Box 2 Box 1 $\mathrm{Li}(\mathrm{s})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ Box 6 (LiF(s)) IGNORE missing electrons / e^{-} First mark (Box 1): $\begin{equation*} \mathrm{Li}(\mathrm{~s})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \tag{1} \end{equation*}$ Second mark (Box 4): $\mathbf{L i}^{+}(\mathbf{g})+\mathbf{F}(\mathbf{g})\left(+\mathrm{e}^{-}\right)$ Third and Fourth marks (if box 1 is correct): 'Box 2 ' as above i.e. $\mathrm{Li}(\mathrm{g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ as above 'Box 3^{\prime} as above i.e. $\mathrm{Li}^{+}(\mathrm{g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})\left(+\mathrm{e}^{-}\right)$as above OR 'Box 2' Li(s) + F (g) 'Box 3 ' $\mathrm{Li}(\mathrm{g})+\mathrm{F}(\mathrm{g})$ OR 'Box 2 ' $\mathrm{Li}(\mathrm{g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ 'Box 3' $\mathrm{Li}(\mathrm{g})+\mathrm{F}(\mathrm{g})$		4

	Penalise use of 'FI' instead of ' F ' once only	
If Box 1 is $\operatorname{INCORRECT} \max (2)$ for correct transitions e.g if use $F(g)$ or $F_{2}(g)$ instead of $1 / 2 \mathrm{~F}_{2}(g)$, then 2 marks available for two correct transitions involving lithium.		

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	FI RST, CHECK THE FI NAL ANSWER IF answer $=-1046\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ then award (2) marks, with or without working Otherwise look for $\begin{aligned} & -616=(+159)+(+520)+(+79)+ \\ & (-328)+\Delta \mathrm{H}_{\mathrm{LE}} \end{aligned}$ OR $\begin{align*} & \Delta \mathrm{H}_{\mathrm{LE}}=-616-[(+159)+(+520)+ \\ & (+79)+(-328)] \\ & =-616-430 \tag{1}\\ & =-\mathbf{1 0 4 6}\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ NOTE ALLOW for 1 mark: $\begin{array}{\|l} (+) 1046(\text { wrong sign) } \\ -186(+430 \text { instead of }-430) \\ (+) 186(+616 \text { instead of }-616) \\ -1006.5(+79 \text { halved to }+39.5) \\ -1702(\text { wrong sign for } 328) \\ \hline \end{array}$		2

Question Number	Acceptable Answers	Reject	Mark
*22(c)(i)	ALLOW reverse argument where appropriate (NaF more negative than NaCl because) First mark F^{-}smaller (than Cl^{-}) ALLOW 'fluorine ion is smaller (than a chlorine ion') OR F^{-}larger charge density (than Cl^{-}) Second mark: F^{-}(forms) stronger (electrostatic) attractions (than Cl^{-}) IGNORE just 'stronger (ionic) bonds' Penalise ONCE ONLY in (c)(i) and (c)(ii) the use of the word 'atom(s)' or 'molecule(s)'/ use of just formulae such as ' Mg ', ' Na ', ' F^{\prime}, ' F_{2} ', ' Cl ', ${ }^{\prime} \mathrm{Cl}_{2}$ ', etc. OR Penalise ONCE ONLY in (c)(i) and (c)(ii) the use of words such as just 'magnesium' (instead of magnesium ions $/ \mathrm{Mg}^{2+}$) and/or just 'fluorine' (instead of fluoride ions/ F^{-}) /and or just 'chlorine' (instead of chloride ions/ Cl^{-}) IGNORE Any comments about polarization of the anion (by the cation) / covalent character	"NaF is smaller than $\mathbf{N a C l} "$ F^{-}has a smaller atomic radius than Cl^{-}	2

Question Number	Acceptable Answers	Reject	Mark
*22(c)(ii)	ALLOW reverse argument where appropriate (NaF less negative than MgF_{2} because) First mark - size: Mg^{2+} smaller (than Na^{+}) OR 'Magnesium ion' is smaller (than Na^{+}) Second mark - charge: Mg^{2+} has a greater charge (density) (than Na^{+}) OR 'Magnesium ion' has a greater charge (density) (than Na^{+}) [NOTE: It follows that the statement that " Mg^{2+} ions are smaller than Na^{+}ions" would score BOTH marks] IGNORE Any comments about polarization of the anion (by the cation) / covalent character	${ }^{\mathbf{M}} \mathbf{M g F}_{\mathbf{2}}$ is smaller than NaF" Mg^{2+} has a smaller atomic radius than Na^{+}	2

(Total for Question 22 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
23(a)	(Enthalpy/energy change when) one mole of a compound / one mole of a substance IGNORE Statements such as "energy released" or "energy required" here		3
	is formed from its elements (in their standard states, under standard conditions)	'is formed from its gaseous elements'	
(Standard temperature is) 298 K / $25^{\circ} \mathrm{C}$	(1)		
ALLOW "K'			
IGNORE References to room temperature (Standard pressure is) 1 atm / 101 kPa / 100 kPa			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b)}$	$6 \mathrm{C}\left(\mathrm{s}\right.$, graphite) $+7 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{I})$		
	ALLOW $6 \mathrm{C}(\mathrm{s}) / 6 \mathrm{C}$ (graphite) Species and balancing correct (1)		
	State symbols correct State symbols mark is dependent on correct species but allow this mark if 14 H used instead of $7 \mathrm{H}_{2}$		
NOTE $\mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{I}) \rightarrow$ 6C(s, graphite) $+7 \mathrm{H}_{2}(\mathrm{~g})$ scores (1)			

Question Number	Acceptable Answers	Reject	Mark
23(c)	First mark: Both arrows point downwards Second mark: $\begin{equation*} \mathrm{CO}_{2}(\mathbf{g})+\mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathbf{I}) \tag{1} \end{equation*}$ Third mark: $\begin{aligned} & ((1 \times-394)+(2 \times-286)-(1 \times \\ & -890)=) \\ & -76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ No TE from cycle arrows	$\mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathbf{g})$ If incorrect units with a final answer, no $3^{\text {rd }}$ mark	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (d) (i)}$	$(+1652 \div 4=)(+) \mathbf{4 1 3}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	-413	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
23(d)(ii)	First mark: $(+2825-6 x \text { answer to }(\mathrm{d})(\mathrm{i}))$ ALLOW TE only from a positive value given as answer to (d)(i) Second mark: $\begin{equation*} =(+) 347\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ Second mark is CQ on first mark Correct answer with or without working scores		2

(Total for Question 23 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
24(a)			2
	(s-orbital)		
	Circle drawn		
	ALLOW		
	Concentric circles drawn		
	(p -orbital)		
	Figure of '8' / 'dumb-bell' drawn		
	NOTE: p-orbital can be drawn along any axis (axis does not have to be shown)		
	ALLOW		
	If one, two or three p-orbitals of correct shapes are shown		
	If overlapping orbitals are shown of correct shape in both cases, award (1) mark		

Question Number	Acceptable Answers		Reject	Mark
$\mathbf{2 4 (b)}$	(region)	(no. of electrons)		$\mathbf{3}$
	(a d-orbital)	$\mathbf{2}$		
	(a p sub-shell)	$\mathbf{6}$	(1)	
	(the third shell)	$\mathbf{1 8}$	(1)	
			(1)	

Question Number	Acceptable Answers	Reject	Mark
24(c)	First mark: BOTH 2 s and 2 p labelled	$2 p^{6}$	2
	ALLOW		
	(1)		
	Second mark: ALL eight e^{-}shown correctly		
	ALLOW Half-arrows or full arrows for each electron		
	Paired arrows in any one of the $2 p$ orbitals		
	NOTE Single arrows must be orientated in same direction		
	Paired arrows must have opposite spins		

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	First mark:		3
	Makes mention of energy/enthalpy/(heat) energy/heat (change/required)	"Energy given out..." for first mark	
	AND		
	to remove an electron		
	Second mark:		
	one mole/ 1 mol		
	Third mark:		
	Makes mention of gaseous atom(s) (1)	J ust 'gaseous element'/ 'gaseous substance'	
	ALTERNATIVE ANSWER		
	Energy change per mole $/ \mathrm{kJ} \mathrm{mol}^{-1}$ for (1)		
	$\begin{equation*} X(\mathbf{g}) \rightarrow \mathrm{X}^{+}(\mathbf{g})+\mathrm{e}^{(-)} \tag{2} \end{equation*}$		
	One mark for species		
	One mark for correct state symbols		
	Mark independently		
	IGNORE any references to standard conditions		

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	$\mathrm{O}^{2+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{O}^{3+}(\mathrm{g})$ OR $\mathrm{O}^{2+}(\mathrm{g}) \rightarrow \mathrm{O}^{3+}(\mathrm{g})+\mathrm{e}^{-}$ All species and balancing correct State symbols correct $2^{\text {nd }}$ mark is dependent on $1^{\text {st }}$ mark ALLOW ' e^{\prime} for ${ }^{\mathrm{e}} \mathrm{e}^{-}$' IGNORE (g) on the e^{-}	Reverse equation scores (0) overall	2

Question Number	Acceptable Answers	Reject	Mark
24(d) (iii)	First mark:		2
	Big 'jump' / large increase (1)		
	Second mark:		
	between 6th and 7th (IE)	Any other ionization jumps	
	OR after the $\mathbf{6}^{\text {th }}$		
	OR to the $\mathbf{7}^{\text {th }}$		
	OR from 13327 to 71337		
	OR of 58010		
	I GNORE		
	Additional jump identified between 4th and 5th (IE) if justified in terms of a change of sub-shell		
	OR		
	Additional jump identified between 4th and 5th (IE) if justified in terms of NOT being a change of shell		
	(1)		

(Total for Question 24 = 14 marks)
SECTION B = 60 marks
TOTAL FOR PAPER = 80 marks

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2J E

