edexcel

Mark Scheme (Results)
Summer 2012

GCE Chemistry (6CH01) Paper 01
The Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code US031856
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an asterix (*) are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 0}$	D		$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a)}$	First mark: Mass of an atom/mass of an isotope (of an element)	Mass of (all the) isotopes /atoms	2
	IGNORE any references to average or (weighted) mean Second mark: relative to $1 / 12^{\text {th }}$ the mass of an a ${ }^{12} \mathrm{C}$ atom element'	(1)	
NOTE: The second mark is awarded for any mention of ${ }^{12} \mathbf{C}$	IGNORE throughout the candidate's answer any references to 'moles' or '1 mol' or '12 g' Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	$\begin{align*} & \{(35 \times 75.53)+(37 \times 24.47)\} \div 100 \\ & =35.4894 \\ & =35.49 \tag{1} \end{align*}$ Answer to 4 s.f. only. Correct answer no working IGNORE units of any kind (e.g. ' g ' ' $\mathrm{g} \mathrm{mol}^{-1}$ ' 'amu', etc.)		2

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	${ }^{35} \mathrm{Cl}_{2}{ }^{+} /\left({ }^{35} \mathrm{Cl}-{ }^{35} \mathrm{Cl}\right)^{+}$ $\begin{equation*} { }^{37} \mathrm{Cl}_{2}{ }^{+} /\left({ }^{37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}\right)^{+} \tag{1} \end{equation*}$ ALLOW $\left.{ }^{(35} \mathrm{Cl}+{ }^{35} \mathrm{Cl}\right)^{+} \text {and/or }\left({ }^{37} \mathrm{Cl}+{ }^{37} \mathrm{Cl}\right)^{+}$ OR $\left({ }^{35} \mathrm{Cl}{ }^{35} \mathrm{Cl}\right)^{+} \text {and/or }\left({ }^{37} \mathrm{Cl}{ }^{37} \mathrm{Cl}\right)^{+}$ OR $\left({ }^{35} \mathrm{Cl} \text { and }{ }^{35} \mathrm{Cl}\right)^{+}$and/or $\left({ }^{37} \mathrm{Cl} \text { and }{ }^{37} \mathrm{Cl}\right)^{+}$ If the 'formal' charge is omitted on either ion (or both the ions), then award (1) mark only. NOTE: ${ }^{35} \mathrm{Cl}^{+}{ }^{35} \mathrm{Cl}^{+}$and ${ }^{37} \mathrm{Cl}^{+}{ }^{37} \mathrm{Cl}^{+}$scores (1) as each ion has an extra + charge. $2^{35} \mathrm{Cl}^{+}$and $2^{37} \mathrm{Cl}^{+}$scores (1) Accept mass number written as superscript to right of symbol.	$\begin{align*} & { }^{70} \mathrm{Cl}_{2}{ }^{+} \tag{1}\\ & { }^{44} \mathrm{Cl}_{2}{ }^{+} \end{align*}$ $2^{35} \mathrm{Cl}$ and/or $2^{37} \mathrm{Cl}$ scores (0)	2

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	72 (1)		2
	${ }^{35} \mathrm{Cl}-{ }^{37} \mathrm{Cl}^{(+)}$		
	ALLOW		
	$\begin{aligned} & \left(\begin{array}{l} (35 \\ \left.\mathrm{Cl}+{ }^{37} \mathrm{Cl}\right)^{(+)} \text {and/or } \\ \left({ }^{37} \mathrm{Cl}+{ }^{35} \mathrm{Cl}\right)^{(+)} \end{array}\right. \end{aligned}$		
	OR		
	$\left({ }^{37} \mathrm{Cl}{ }^{35} \mathrm{Cl}\right)^{(+)}$and/or $\left({ }^{37} \mathrm{Cl}{ }^{35} \mathrm{Cl}\right)^{(+)}$		
	${ }^{\text {OR }}$		
	$\left({ }^{35} \mathrm{Cl} \text { and }{ }^{37} \mathrm{Cl}\right)^{(+)}$and/or $\left({ }^{37} \mathrm{Cl} \text { and }{ }^{35} \mathrm{Cl}\right)^{(+)}$		
	NOTE:		
	The + charge is not needed on this		
	IGNORE extra + charges, so ALLOW ${ }^{35} \mathrm{Cl}^{+37} \mathrm{Cl}^{+}$and/or ${ }^{37} \mathrm{Cl}^{+35} \mathrm{Cl}^{+}$		

Question Number	Acceptable Answers	Reject	Mark
22(a)	First mark:- Makes mention of energy/enthalpy/(heat) energy/heat (change) AND to remove an electron AND one mole/ 1 mol Second mark: Makes mention of gaseous atom(s) ALTERNATI VE ANSWER Energy change per mole for $\begin{equation*} X(g) \rightarrow X^{+}(g)+e^{(-)} \tag{1} \end{equation*}$ Mark the two points independently IGNORE any references to standard conditions	"Energy given out..." for first mark Just 'gaseous element'/ 'gaseous substance'	2

Question Number	Acceptable Answers	Reject	Mark
*22(b)	Any two from three:- (Atomic) radius increases/there are more shells/(outermost) electron further from the nucleus there is 'more shielding' or 'more screening' (down group) the nuclear attraction decreases OR attraction between nucleus and (outermost) electron decreases OR the increased shielding/increased distance outweighs the increased nuclear charge IGNORE any references to 'more protons' and/just 'increasing nuclear charge' IGNORE references to "effective nuclear charge"	I onic radius increases	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (c) (i)}$	Any ONE from: (Electrons are being removed from an) increasingly positive ion/ charge on the ion (successively) increases/ increasing proton : electron ratio/ same number of protons (attracting) fewer electrons / ions get smaller/ the electron repulsion decreases/ the shielding decreases/ electrons (being removed are) closer to the nucleus/ effective nuclear charge increases	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
*22(c)(ii)	First mark: Two jumps Two (large) jumps (between $1^{\text {st }}$ and $2^{\text {nd }}$ and $9^{\text {th }}$ and $10^{\text {th }}$ IEs) NOTE: A sketch graph with two (large) jumps can score this first mark Note if the jumps are specified, they must be between $1^{\text {st }}$ and $2^{\text {nd }}$ and $9^{\text {th }}$ and $10^{\text {th }}$ IEs Second mark: Electronic configuration of Na 2, 8, 1 mentioned in words, annotated on a sketch graph or drawn out in a diagram (e.g. electrons shown in orbits/shells around the centre of the atom) but NOT just inferred ALLOW " $1,8,2$ " OR $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$ Mark the two points independently	$1^{\text {st }}$ mark if the graph is sketched 'back to front'	2

Question Number	Acceptable Answers	Reject	Mark
22(d)(i)	Credit any of the following representations (but need BOTH Mg AND Al to be correct) $\mathrm{Mg} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ and Al $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$ $\mathrm{Mg} 1 \mathrm{~s}_{2} 2 \mathrm{~s}_{2} 2 \mathrm{p}_{6} 3 \mathrm{~s}_{2}$ and Al $1 \mathrm{~s}_{2} 2 \mathrm{~s}_{2} 2 \mathrm{p}_{6} 3 \mathrm{~s}_{2} 3 \mathrm{p}_{1}$ $\mathrm{Mg} 1 \mathrm{~S}^{2} 2 \mathrm{~S}^{2} 2 \mathrm{P}^{6} 3 \mathrm{~S}^{2}$ and Al $1 S^{2} 2 S^{2} 2 P^{6} 3 S^{2} 3 P^{1}$ $\mathrm{Mg} 1 \mathrm{~S}_{2} 2 \mathrm{~S}_{2} 2 \mathrm{P}_{6} 3 \mathrm{~S}_{2}$ and Al $1 \mathrm{~S}_{2} 2 \mathrm{~S}_{2} 2 \mathrm{P}_{6} 3 \mathrm{~S}_{2} 3 \mathrm{P}_{1}$		1

Question Number	Acceptable Answers	Reject	Mark
*22(d)(ii)	NOTE: ALLOW an argument focusing on either the Al or the Mg atom	1	
	El THER In AI, (3p) electron (lost is) at higher energy/more shielded (by 3s electrons)/further from the nucleus IGNORE any reference to an unpaired electron in Al	Al has one more shell than Mg	J ust (lost from) a new sub-shell
In Mg, (3s) electron (lost is) at lower energy/less shielded/ nearer to the nucleus/from a full subshell/from a full orbital/from (stable) (3)s²	Electron lost in Mg from a "full shell"		
Any reference to an Al atom being larger in size than an Mg atom scores zero overall.			

Question Number	Acceptable Answers	Reject	Mark
23(a)	The heat/enthalpy/energy change (for a reaction) is independent of the path(way)/route	I IGNORE any extra detail referring to "initial and final states"	

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	$\mathrm{CO}_{2}+\mathbf{2} \mathrm{H}_{2} \mathrm{O}$ (1) Both arrows in correct direction downwards (1) IGNORE state symbols, even if incorrect Mark the two points independently		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b) (i i)}$	$\Delta \mathrm{H}=-890-(-283)$ $=-607\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Correct answer with no working scores (2)	2 (1) NOTE: $+607\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores (1) only	

Question Number	Acceptable Answers	Reject	Mark
*23 (b) (iii)	Cannot stop the reaction at CO OR the reaction produces CO_{2} /complete combustion occurs OR may produce some carbon/soot OR cannot react exact amounts of methane to oxygen	non-standard conditions J ust incomplete combustion occurs J ust forming 'other products' /just a 'mixture of products' Just methane is 'very reactive'/ 'explosive' J ust heat loss Cannot measure the temperature change	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c)}$	First mark: State of the $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ Water is in the gas phase/water is (formed) as steam/water is not in its standard state/water is not (formed as a) liquid (1)	2	
	Second mark: I dea of an energy change when there is a change of state	Change of state involves an energy change /energy change (for the reaction given) is less exothermic	Energy change is more exothermic /less endothermic

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (a)}$	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$		$\mathbf{1}$
	ALLOW letters other than n		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (b)}$	A compound which contains (C=C) double bonds OR A compound that will undergo addition reactions OR Does not contain the maximum number of hydrogen atoms		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c) (i)}$	E-3-ethylhex-2-ene (2)		2
	(1) mark for 3-ethylhex-2-ene (1) mark for 'E'		
	IGNORE any missing hyphens or any hyphens replaced by commas Mark independently		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c) (i i)}$	The four atoms/four groups around the C=C double bond are different OR No two groups are the same OR There are no common groups on either side of the C=C double bond OR There are two alkyl groups on one of the carbon atoms (in the C=C double bond)	Each side is not symmetrical	1
	OR There are three alkyl groups around the double bond		
OR An indication of the existence of Priority Rules (for E-Z nomenclature)			
OR One of the carbon atoms (of the C=C double bond) is not bonded to a hydrogen atom			
	ALLOW 'functional groups' for 'groups'		

ALLOW displayed or skeletal formulae throughout 24(d)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (i)}$	$\mathrm{CH}_{3} \mathrm{CH}_{3}$ ALLOW displayed or skeletal formulae throughout 24(d)	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl} / \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (i i i) ~}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (i v) ~}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{Br} / \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{Br}$	$\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br} ;$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OBr} ; \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$	$\mathbf{1}$

Single-headed arrows used throughout max (3) Minor product route max (3) If the minor product route is shown, the last mark is lost, but the first three marks can be scored consequentially as follows:- - both arrows - carbocation intermediate - attack of bromide ion (NOTE: The bromide ion must show a full negative charge. The lone pair of electrons need not be shown) NOTE: If a correct mechanism for the electrophilic addition of HBr to ethene is shown then max (2) (i.e. the first and the third marks in the mechanism)		

Question Number	Acceptable Answers	Reject	Mark
24(f)(i)	 NOTE: CH_{3} group does not have to be displayed. IGNORE if any connectivity is shown from the $\mathbf{H}_{\mathbf{3}}$ in a $\mathrm{CH}_{\mathbf{3}}$ group IGNORE bond angles ALLOW one mark for just but-2-ene's structural formula		2

Question Number	Acceptable Answers	Reject	Mark
24(f)(ii)	Any ONE of:- - No atoms lost (or gained) - No elements lost (or gained) - (Only) one product (is formed) - (Produced by) an addition reaction - Addition polymer(ization) - Polymer is a repeat of the monomer - No small molecules (formed) - No co-products - No waste products - Same C:H ratio - Same ratio of carbon: hydrogen atoms - Same ratio of each element - Same ratio of atoms	(Monomer and polymer have) 'same number of carbon and hydrogen atoms'	1

Question Number	Acceptable Answers	Reject	Mark
24(f)(iii)	100\% AND some correct justification is needed ONE answer from:- 100% as addition reaction 100% because all the atoms are incorporated into the polymer 100% because (only) one product is formed 100% because (only) one desired product is formed 100% because no atoms are lost 100% because no waste products 100% because no small molecules (formed) 100% as no co-products 100% as no by-products	Statements such as 'the atom economy is almost 100\%' OR Just "it has a high atom economy"	1

Question Number	Acceptable Answers	Reject	Mark
25(a)(i)	$\begin{align*} & \text { Amount } \mathrm{Na}=1.73(\mathrm{~g}) \div 23\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & =0.075(22)(\mathrm{mol}) \\ & \text { Amount } \mathrm{O}=1.20(\mathrm{~g}) \div 16\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & =0.075(\mathrm{~mol}) \tag{1}\\ & \text { IGNORE sf, even if } 1 \mathrm{sf} \end{align*}$ $\begin{equation*} \mathrm{NaO} \tag{1} \end{equation*}$ Correct answer no working NOTE: Correct answer can be obtained via incorrect working and all responses should be read carefully e.g. Amount $\mathrm{Na}=23 \div 1.73=13.3$ Amount $\mathrm{O}=16 \div 1.20=13.3$ scores second mark only for NaO if obtained by incorrect working OR e.g. Use of atomic numbers gives the Na : O ratio as $0.157: 0.150$ and an empirical formula of NaO . This scores (1) overall (i.e. the 2nd mark). OR e.g Use of atomic number ONLY for Na (i.e. $\mathrm{Na}=11$) gives the Na : O ratio as $0.157: 0.075$ and an empirical formula of $\mathrm{Na}_{2} \mathrm{O}$. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of $\mathbf{O}=32$ gives $\mathrm{Na}_{2} \mathrm{O}$ and scores second mark	$\mathrm{Na}_{2} \mathrm{O}_{2}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (a) (i i)}$	$(\mathrm{NaO}=39$ hence molar mass twice that of $\mathrm{NaO} \therefore)$ so $\mathbf{N a}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$	'2NaO'	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
25(a)(iii)	$2 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})$ All species correct State symbols and balancing NOTE: $2^{\text {nd }}$ mark is conditional on correct species. NOTE: $2 \mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaO}(\mathrm{s})$ scores (1) $\mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{NaO}_{2}(\mathrm{~s})$ scores (1) $4 \mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ scores (2)		2

Question Number	Acceptable Answers	Reject	Mark
25(a)(iv)	Moles of $\mathrm{O}_{2}=0.075 \div 2=0.0375$ OR $1.2 \div 32=0.0375(\mathrm{~mol})$ $0.0375 \mathrm{~mol}^{2} 24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ $=0.9(0)\left(\mathrm{dm}^{3}\right)$ ALLOW $900 \mathbf{c m}^{3}$ (units must be present here) Correct answer no working OR Moles of $\mathrm{Na}=1.73 \div 23=0.075217$ $=$ moles of O Moles of $\mathrm{O}_{2}=0.075217 \div 2=$ 0.0376085 $0.0376085 \times 24=0.903\left(\mathrm{dm}^{3}\right)$ or $903 \mathbf{c m}^{\mathbf{3}}$ IGNORE s.f., including ONE s.f. NOTE: If number of moles $\times 24\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)$ is clearly evident and correctly calculated in stated units, award second mark		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (a) (v)}$	$0.0375 \times 6.02 \times 10^{23}$ $\left(=2.2575 \times 10^{22}\right.$ (molecules)) $=2.26 \times 10^{22}$ (molecules) IGNORE s.f. unless 1 s.f.	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (b)}$	Sodium might react with nitrogen in the air/sodium forms a nitride/ nitrogen (gas) is present in the air (which reacts with the sodium) OR sodium might form a different oxide (e.g. $\mathrm{Na}_{2} \mathrm{O}$ or allow NaO_{2})	J ust 'very reactive' OR 'very explosive'	$\mathbf{1}$
sodium forms $\mathrm{Na}_{2} \mathrm{O}_{2}$ alone	NOTE: If nitrogen / N_{2} is mentioned as part of a 'list' of substances that can be present in air, award the mark	References to hydrogen in the air	Just 'reacts with other substances in the air' (as nitrogen not identified

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 6 (a)}$	(Electrostatic) attraction between (bonding) electrons and nuclei/protons	Just a 'shared pair of electrons'	$\mathbf{1}$

- IGNORE ANY INNER SHELL ELECTRONS DRAWN
- ONLY THE TOTAL NUMBERS OF ELECTRONS IN OUTER SHELLS ARE BEING ASSESSED
- ALLOW ELECTRONS TO BE ALL DOTS OR ALL CROSSES OR BOTH

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 6 (b) (i)}$	H		$\mathbf{1}$
	$\mathrm{H} \times \mathrm{C} \times \mathrm{C}$ $\times \bullet$ H		

Question Number	Acceptable Answers	Reject	Mark
26(b)(ii)			1

Question Number	Acceptable Answers	Reject	Mark
26(b)(iii)	${ }_{x}^{x} N{ }_{x}^{x} N$: NOTE: The lone pair of electrons on each N atom do not have to be shown as a pair		1

Question Number	Acceptable Answers	Reject	Mark
26(b)(iv)	The + sign can be shown anywhere Ignore missing brackets Ignore if the + is missing		1

Question Number	Acceptable Answers	Reject	Mark
26(c)(i)	IGNORE any references to 'molecules' in this part only First mark: Location of silicon's electrons Silicon's (outer) electrons are fixed (in covalent bonds)/ silicon's (outer) electrons are in fixed positions (in covalent bonds)/ silicon's (outer) electrons are involved in bonding Second mark: Lack of mobility of silicon's electrons (therefore) silicon's electrons are not free (to move)/ silicon has no free electrons/ there are no mobile electrons in silicon/ silicon has no delocalized electrons/ silicon's electrons cannot flow IGNORE references to lack of ions	'Silicon is ionic' scores (0) for the question ‘silicon's ions are not free to move' scores (0) for the question	2
Question Number	Acceptable Answers	Reject	Mark
26(c)(ii)	(The covalent) bonds are strong (throughout the lattice) (therefore) a lot of energy is required to break the bonds / a lot of energy is needed to overcome the attractions IGNORE any references to 'giant molecular'	'(simple) molecular silicon' (0) /'molecules of silicon' (0) /‘silicon has ions' (0) /'intermolecular forces' / 'van der Waals' forces'/ 'London forces' (0) ALL THE ABOVE SCORE (0) OVERALL	2

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US031856 Summer 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

