## 

Mark Scheme (Results)
June 2011

## GCE Chemistry (6CH01) Paper 01 The Core Principles of Chemistry

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our GCE Science Advisor directly by sending an email to ScienceSubjectAdvisor@EdexcelExperts.co.uk.
You can also telephone 08445760037 to speak to a member of our subject advisor team.

June 2011
Publications Code US027559
All the material in this publication is copyright
© Edexcel Ltd 2011

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- $\quad$ Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an asterix (*) are ones where the quality of your written communication will be assessed.


## Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
( ) means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

## Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

## Section A (multiple choice)

| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1}$ (a) | C | $\mathbf{1}$ |
| Question <br> Number Correct Answer Mark <br> $\mathbf{1}$ (b) B $\mathbf{1}$ |  |  |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ~ ( c ) ~}$ | D | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( d )}$ | B | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{2}$ | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{3}$ | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{4}$ | C | $\mathbf{1}$ |


| Question | Correct Answer | Mark |
| :--- | :--- | :--- |
| Number |  |  |
| $\mathbf{5}$ | B | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{6}$ | D | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7}$ | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{8}$ | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{9}$ | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 0}$ | B | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 1}$ | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 2}$ | D | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 3}(\mathbf{a})$ | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 3}$ (b) | D | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 3}$ (c) | B | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 4}$ | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 5}$ | B | $\mathbf{1}$ |

## Section B

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 16 (a) | First mark <br> The energy (allow enthalpy / heat) required (allow change) per mole <br> (1) <br> Second mark <br> to form (gaseous) singly charged positive ions <br> Or <br> to remove (1 mole of) electrons (1) <br> Third mark <br> from gaseous atoms (of the element) (1) <br> $\mathrm{X}(\mathrm{g}) \longrightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{(-)}$scores last 2 marks <br> Ignore standard conditions Per mole scores at any point | Energy / enthalpy produced <br> Just gaseous element | 3 |
| Question Number | Acceptable Answers | Reject | Mark |
| 16 (b) | Nuclear charge / effective nuclear charge / number of protons / atomic number increases (1) <br> Two of <br> (Outer) electrons in the same (quantum) shell / same number of electron shells (1) <br> Shielding (of nucleus)(about) the same (1) <br> Distance from nucleus/atomic radius less (1) | charge density <br> orbitals, subshell | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 6 ~ ( c ) ~}$ | Route 1 <br> Electrons (in the p sub-shell) are <br> paired (for the first time) (in S) / <br> two electrons occupy the same (p) <br> orbital / full orbital / electrons-in- <br> boxes diagram (1) <br> repulsion between the (paired) <br> electrons (reduces IE) (1) | $\mathbf{2}$ |  |
|  | Route 2 <br> P has a half-filled p sub-shell / half- <br> filled p orbitals which is stable (1) | (on ionization) S gains a half-filled p <br> sub-shell / half-filled p orbitals (1) |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 6}(\mathbf{d})$ | $200-490\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ | Negative values | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 7 ( a )}$ | Do not penalize the use of $\mathrm{A}_{\mathrm{r}}(\mathrm{Mg})=$ <br> 24.3 at any stage in this question. <br> Penalize SF errors (1 SF, incorrect SF <br> (eg. 0.02) and incorrect rounding to <br> 2 SF (e.g. 0.016)) only once in parts <br> (a - d) <br> Allow 0.0166 <br> Allow fractions (e.g. 1/60) |  | $\mathbf{1}$ |
|  | Amount $\mathrm{Mg}=(0.4 \div 24)=0.016666$ <br> $=0.0167(\mathrm{~mol})$ |  |  |
| Allow <br> Amount $\mathrm{Mg}=(0.4 \div 24.3)=$ <br> $0.016461=0.0165(\mathrm{~mol})$ |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 7}(\mathrm{b})$ | Amount $\mathrm{HCl}=1.5 \times 22.2 / 1000=$ <br> $0.033333=0.0333(\mathrm{~mol})$ <br> Allow <br> Amount $\mathrm{HCl}=2 \times$ answer in (a) |  | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 7} \mathbf{( c )}$ | Amount of $\mathrm{H}_{2}=400 \div 24000=$ <br> $0.016666=0.0167(\mathrm{~mol})$ |  | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 7}$ (d) | Ratio mol Mg: $\mathrm{HCl}: \mathrm{H}_{2}=0.0167$ <br> $(0.165): 0.0333: 0.0167$ <br> $=1: 2: 1$ | Just stating the <br> molar ratio | $\mathbf{1}$ |
|  | Allow answers in which the mole <br> ratios of the reactant and products <br> are compared separately |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 17 (e) | $\mathrm{Mr}_{\mathrm{r}}\left(\mathrm{MgCl}_{2}\right)=24+2 \times 35.5=95(\mathbf{1})$ <br> Mol $\mathrm{MgCl}_{2}=(\mathrm{mol} \mathrm{Mg})=0.0166666$ (or 0.0167 ) (1) <br> Mass $\mathrm{MgCl}_{2}=95 \times 0.0166666=1.58$ <br> (g) $\mathbf{3} \mathbf{~ s f ( 1 )}$ <br> Or $95 \times 0.0167=1.59(\mathrm{~g}) 3 \mathrm{sf}$ <br> Or $95.3 \times 0.0166666=1.59$ <br> Or $95 \times 0.0165=1.58$ <br> Or $95.3 \times 0.0165=1.57$ <br> Correct answer with no working scores (3) <br> TE on 17(a) |  | 3 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 18 \\ & \text { (a) (i) } \end{aligned}$ | Product in box: $\mathrm{CuSO}_{4}(\underline{\text { aq) }}$ (1) <br> Either <br> Mark the arrows and then the labels: <br> Two downward arrows (1) <br> labelled with symbols or values with or without units (1) <br> OR <br> Mark each arrow and label separately Downward arrow \& $\Delta \mathrm{H}_{1}$ or value (1) <br> Downward arrow \& $\Delta H_{2}$ or value (1) <br> Allow reversed arrows with reversed signs on $\Delta \mathrm{H}$ <br> Ignore any other labels on the arrows. <br> Ignore $5 \mathrm{H}_{2} \mathrm{O}$ in bottom product |  | 3 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 18 \\ & \text { (a) (ii) } \end{aligned}$ | Award higher mark from: <br> Route 1 <br> Mark the calculation based on their cycle TE from (a)(i) ignoring incorrect bottom product <br> Route 2 <br> Mark a calculation which is independent of the cycle <br> $\Delta H_{\text {reaction }}=\Delta H_{1}-\Delta H_{2}$ stated or implied $\begin{aligned} & =+11.5-(-66.1)(\mathbf{1}) \\ & =(+) 77.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1}) \end{aligned}$ <br> Correct answer alone scores (2) <br> $-77.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ alone or from a correct addition scores (1) |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 8}$ (b) | Dehydration reaction cannot be <br> controlled <br> OR <br> temperature change (of dehydration <br> reaction) cannot be measured | Temperature of <br> solid / crystals <br> cannot be <br> measured | $\mathbf{1}$ |
| OR <br> CuSO $4.5 \mathrm{H}_{2}$ O would need heating (so <br> temperature change cannot be <br> measured) | OR <br> impossible to add exact amount of <br> water (to obtain value by reverse <br> process) | OR <br> cannot mix solid with water to <br> obtain perfect crystals |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline * 18 \\ (c)(i) \end{array}$ | First \& second marks stand alone <br> 1. Pipette/burette / measuring cylinder / balance to transfer (a known amount of) (water) (1) <br> 2. to (expanded) polystyrene cup / calorimeter / any insulated container allow coffee / plastic cup (1) <br> Third \& fourth marks only awarded if correct chemicals and procedure used <br> 3. add solid and stir (allow mix or shake) mixture (1) <br> 4. measure initial and final temperature allow temperature change (1) | Just mass / volume measured <br> Temperature increase unless exothermic penalised in (b) | 4 |
| Question Number | Acceptable Answers | Reject | Mark |
| $\begin{aligned} & 18 \\ & \text { (c) (ii) } \end{aligned}$ | Any three from: <br> - heat transfer (from surroundings) (allow loss or gain) <br> - approximation in (specific) heat capacity of solution <br> - neglecting (specific) heat capacity of calorimeter/apparatus (allow energy absorbed by the apparatus) <br> - reaction / dissolving may be incomplete/slow <br> - temperature change is very small (and difficult to measure) <br> - Density of solution is taken as the same as water <br> - conditions not standard (allow) | Errors in calculation including adding mass of solid to mass of water <br> loss of reagents / water incomplete combustion Just "difficult to measure' | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 9}$ | $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ or any symbol in place of n |  | $\mathbf{1}$ |
| $\mathbf{( a ) ( i )}$ | Ignore $\mathrm{C}_{5} \mathrm{H}_{12}$ |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 9}$ <br> (a)(ii) | (structural / chain) isomers |  | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 9}$ |  |  |  |
| (a)(iii) |  | Structures in <br> which any <br> bonds or atoms <br> are omitted <br> Structures with | $\mathbf{1}$ |
| $\mathrm{CH}_{3}$ groups |  |  |  |,


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 9}$ | 2,2-dimethylpropane (1) |  | $\mathbf{1}$ |
| $\mathbf{( a ) ( i v )}$ | Allow <br> dimethylpropane, 2-dimethylpropane <br> 2,2 dimethylpropane, 2 <br> dimethylpropane |  |  |
|  | Ignore hyphens, commas, spaces |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 9}$ | $\mathrm{CH}_{4}+\mathbf{1 1}^{1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}}$ |  | $\mathbf{2}$ |
| $\mathbf{\text { Formulae (1) balance (i) }}$Or multiples <br> Ignore state symbols <br> No TE on any other species |  |  |  |


| Question <br> Number Acceptable Answers Reject Mark <br> $\mathbf{1 9}$ <br> (b)( ii) Insufficient / not excess oxygen / air Reactant does <br> not react <br> completely with <br> oxygen <br> Just 'methane in <br> excess' $\mathbf{1}$ <br> Question <br> Number Acceptable Answers Reject Mark <br> $\mathbf{1 9}$ (b)(iii) Any two from <br> CO is toxic / poisonous (allow <br> harmful) (1) <br> Less energy is produced (allow <br> (methane) <br> becomes a less efficient fuel) (1) <br> Unburned hydrocarbons react to form <br> compounds which are toxic / harmful <br> (1) <br> Allow <br> sooty deposits / carbon / particulates <br> in atmosphere (ignore reference to <br> global dimming) (1) <br> Unburned hydrocarbons are toxic / <br> harmful (1) <br> If reference to damage to ozone <br> layer, global warming and / or acid <br> rain then max (1) Rexplosive <br> wasted $\mathbf{2}$   Air pollution |
| :--- |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| *19 <br> (b) (iv) | Global warming / climate change <br> (1) <br> Due to (increase in concentration of) $\mathrm{CO}_{2}$ in the atmosphere / $\mathrm{CO}_{2}$ is a greenhouse gas (1) <br> Traps the heat from the earth / IR radiation (re-radiating) from the earth (1) <br> If reference to damage to ozone layer then max (2) <br> Photochemical smog is formed (0) $\mathrm{NO}_{\mathrm{x}}$ is produced (by reaction of nitrogen \& oxygen) (1) and reacts with (volatile) organic compounds in sunlight (1) <br> Ignore references to increase in (of concentration) of $\mathrm{H}_{2} \mathrm{O}$ in the atmosphere <br> Ignore references to the effects of climate change | (heat) from the sun <br> Global dimming due to complete combustion of hydrocarbon fuels <br> Effects (e.g. reactions of unburned hydrocarbons) due to incomplete combustion | 3 |
| Question Number | Acceptable Answers | Reject | Mark |
| $\begin{aligned} & 19 \\ & \text { (c)(i) } \end{aligned}$ | The arrows show the movement of electrons (1) <br> Single-headed/I denotes 1 electron and <br> Double-headed/II denotes a pair of / <br> 2 electrons /allow lone pair (1) <br> Allow <br> Explanations just in terms of electron movement in bond fission | Just stating homolytic and heterolytic fission | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 19 \\ & \text { (c) (ii) } \end{aligned}$ | Equation (1) <br> two arrows correctly showing a homolytic fission (1) <br> Here and in subsequent mechanisms the covalent bonds may be shown as lines or electron pairs or both <br> The mechanism arrows may be shown on the same side or on different sides of the bond <br> The single electrons need not be shown |  | 2 |
| Question Number | Acceptable Answers | Reject | Mark |
| $\begin{aligned} & 19 \\ & (\mathrm{c})(\mathrm{iii}) \end{aligned}$ | $\begin{aligned} & \mathrm{CH}_{4}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{CH}_{3} \cdot \\ & \mathrm{CHCl}_{3} \cdot \\ & +\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \end{aligned}$ <br> Ignore state symbols and curly arrows. I gnore order of equations so these marks may be scored if an initiation step with fission of $\mathrm{C}-\mathrm{H}$ bond in methane is given in c(ii) |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 9}$ <br> $\mathbf{( c ) ( i v ) ~}$ | Because a (chlorine) radical is <br> regenerated / reformed / reproduced <br> / recycled (by the propagation <br> reactions each time a molecule of <br> product is formed) (1) | radical is <br> regenerated by <br> UV light <br> (chlorine) radical <br> is a catalyst | $\mathbf{1}$ |
| Allow methyl radical regenerated if <br> initiation step with fission of C - H <br> bond in methane is given in c(ii) and <br> propagation order reversed | Ignore references to chain reaction |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 19 \\ & \text { (c)(v) } \end{aligned}$ | $\mathrm{CH}_{3}{ }^{\cdot}+\mathrm{CH}_{3}^{\cdot} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} / 2 \mathrm{CH}_{3}{ }^{\bullet} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$ <br> I gnore state symbols The single electrons need not be shown |  | 1 |
| Question <br> Number | Acceptable Answers | Reject | Mark |
| 19 (d) | UV light does not have enough energy to (ALLOW 'cannot') break the $\mathrm{C}-\mathrm{H}$ bond (1) <br> So no H free radicals / atoms are formed (therefore cannot combine to form $\mathrm{H}_{2}$ ) (1) | Just 'hydrogen' Just ‘so no $\mathrm{H}_{2}$ formed | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 0 ~ ( a )}$ | (i) Structure <br> Lattice /close- packed (1) <br> (or a diagram with at least 3 rows) <br> positive ions or cations (allow metal <br> ions) ( 1) <br> delocalized electrons / sea of <br> electrons (1) | layers <br> protons <br> 'free' electrons | $\mathbf{4}$ |
|  | (ii) Bonding <br> (Electrostatic) attraction <br> between positive ions / cations (allow <br> metal ions) and delocalized electrons <br> / sea of electrons (1) |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 20 (b) | Any three from |  | 3 |
|  | 1. Magnesium ion / $\mathrm{Mg}^{2+}$ (allow magnesium) has a larger charge (density) than the sodium ion (allow sodium) / $\mathrm{Na}^{+}$some comparison of the ions is required (1) | Just $\mathrm{Mg}^{2+}$ and $\mathrm{Na}^{+}$ |  |
|  | 2. magnesium ions / $\mathrm{Mg}^{2+}$ smaller than sodium ions (1) |  |  |
|  | 3. Magnesium / $\mathrm{Mg}^{2+}$ contributes two / more electrons (per atom) to the "sea" of electrons (1) |  |  |
|  | 4. magnesium ions / $\mathrm{Mg}^{2+}$ have greater attraction for the delocalized "sea" of electrons (1) | More bonds |  |
|  | I gnore reference to number of outer electrons in $\mathrm{Mg} / \mathrm{Na}$ Any references to the bonding being ionic, covalent or intermolecular (max 2) |  |  |
|  | Reverse argument can gain full marks |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 0}$ (c) | The delocalized electrons / sea of <br> electrons (1) <br> Flow (allow move / free to move) (1) <br> (When a potential difference/voltage <br> is applied) <br> 'Carry the current' is not sufficient for <br> the mark | 'free' electrons | $\mathbf{2}$ |

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US027559 J une 2011


For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

