PMT

Mark Scheme (Results) June 2010 GCE

GCE Chemistry (6CH01/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

Summer 2010 Publications Code US023629 All the material in this publication is copyright

© Edexcel Ltd 2010

Section A (multiple choice)

Question Number	Correct Answer	Mark
1 (a)	B	1
Question Number	Correct Answer	Mark
1 (b)	D	1
Quanting		
Question Number	Correct Answer	Mark
2	D	1
Question Number	Correct Answer	Mark
3	A	1
Question Number	Correct Answer	Mark
4 (a)	В	1
Question Number	Correct Answer	Mark
4(b)	D	1
		· · · · · · · · · · · · · · · · · · ·
Question Number	Correct Answer	Mark
4 (c)	С	1
		i
Question Number	Correct Answer	Mark
4 (d)	A	1
Question Number	Correct Answer	Mark
5	В	1
Question Number	Correct Answer	Mark
6	A	1
Question Number	Correct Answer	Mark
7	С	1
<u>.</u>		i
Question Number	Correct Answer	Mark
8	D	1
·		
Question Number	Correct Answer	Mark
9	С	1
L		

Question Number	Correct Answer	Mark
10	C	1

Question Number	Correct Answer	Mark
11	D	1

Question Number	Correct Answer	Mark
12	В	1

Question Number	Correct Answer	Mark
13	D	1

Question Number	Correct Answer	Mark
14 (a)	В	1

Question Number	Correct Answer	Mark
14 (b)	A	1

Question Number	Correct Answer	Mark
14 (c)	С	1

Section B

Question Number	Acceptable Answers	Reject	Mark
15 (a)(i)	electrons (1) charge (1) square brackets not essential Mark independently Ignore (labelling of) nucleus unless incorrect		2

Acceptable Answers	Reject	Mark
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶		1
Allow electron number as sub script		
Allow orbitals as capital letters		
Allow TE from (a) (i) if Ca atom or Ca^+ ion		
	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Allow electron number as sub script Allow orbitals as capital letters	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Is Allow electron number as sub script Allow orbitals as capital letters

Question Number	Acceptable Answers	Reject	Mark
15 (a)(iii)	Smaller Because it has one less (sub) shell of electrons / orbital / energy level / less shielding (1) And the ratio of protons : electrons has increased / more protons than electrons / greater net force on remaining electrons (so remainder of electrons held more closely) / greater effective nuclear charge (1)	bigger scores zero greater nuclear charge /positive charge	2

Question Number	Acceptable Answers	Reject	Mark
15 (a)(iv)	Any two from: Strong (electrostatic) forces / attractions / bonds (between ions) (1) (ions) held in giant lattice / many (ionic) attractions / forces / bonds (1) So large amount of energy needed (to break apart ions) (1)	Any mention of covalent or metallic bonds or atoms or molecules scores zero High temperature	2

Question Number	Acceptable Answers	Reject	Mark
15 (b)(i)	Because the ions are free to move (when a potential difference is applied)	Electrons / particles are free to move	1

Question Number	Acceptable Answers	Reject	Mark
15 (b)(ii)	The cations / barium and calcium (ions) are different sizes Ignore any discussion of reasons (could select either the calcium ion because it has more water molecules associated with it OR the barium ion because it has more shells of electrons and so larger)	Atoms are different sizes	1

Question Number	Acceptable Answers	Reject	Mark
15 (b)(iii)	Mass of calcium ions in 1 kg = 0.100 x 40 (= 4.0) (g) (1)		2
	If mass quoted must be correct to score first mark		
	Hence 4.0 g per 1000 g of solution So ppm = (4.0/1000) x 1000000 = 4000 (ppm) (1)		
	OR Mass of calcium ions in 1 kg = 0.100 x 40.1 (= 4.01) (g) (1)		
	Hence 4.01 g per 1000 g of solution So ppm = (4.01/1000) x 1000000 = 4010 (ppm) (1)		
	Correct answer alone = 2 marks		
	Allow TE for second mark from incorrect mass		

Question Number	Acceptable Answers	Reject	Mark
15 (c)	 (Sulfur / nitrogen oxides) form when (fossil) fuels are burnt / when petrol or diesel burn in vehicle engines / emissions from vehicle (engines) / volcanoes / lightning (1) They (react with water to) form sulfuric / sulfurous acid /nitric acid /acid rain / gases are acidic (1) Which reacts with limestone (to form soluble compounds) / limestone and acid take part in neutralisation / dissolves building / corrodes building (1) Allow correct equation for third mark but Ignore equations if mark already awarded. Ignore comments regarding erosion 	from factories alone	3

Question Number	Acceptable Answers	Reject	Mark
15 (d)	Either Yes, as the values match closely (so little deviation from ionic model) Or no, as the values are (slightly) different so a degree of covalency / not fully ionic	100% ionic covalent	1

Question Number	Acceptable Answers	Reject	Mark
16 (a)	Atoms (of an element) with the same number of protons (1)		2
	But with different number of neutrons (1)		
	Same atomic number but different mass number only = (1)		
	Element(s) with same number of protons but different number of neutrons = (1) max		
	Ignore comments on electrons unless incorrect in which case award max 1		

Question Number	Acceptable Answers	Reject	Mark
16 (b)(i)	(Electric field) accelerates ions		1

Question Number	Acceptable Answers	Reject	Mark
16 (b) (ii)	(Magnetic field) deflects / changes direction of / bends the beam of ions if the term 'ions' is missing or an incorrect term is used e.g. 'atoms', penalise only once in parts b (i) and b (ii)	just bends ions	1

Question Number	Acceptable Answers	Reject	Mark
16 (c)	<pre>% abundance = (135 x 9.01 + 136 x 10.81 + 137 x 12.32 + 138 x 67.86) /100 (1) = 137.4 (1) ignore units Allow TE for one slip in transfer of data from question Correct answer scores (2)</pre>	Just 137 as final answer 137.39 137.3903 137.390	2

Question Number	Acceptable Answers	Reject	Mark
16 (d)	three peaks (caused by Br_2^+ ions) (1) because ions (⁷⁹ Br- ⁷⁹ Br) ⁽⁺⁾ and (⁸¹ Br- ⁷⁹ Br) ⁽⁺⁾ / (⁷⁹ Br- ⁸¹ Br) ⁽⁺⁾ and (⁸¹ Br- ⁸¹ Br) ⁽⁺⁾ (1) Mark independently		2

Question Number	Acceptable Answers	Reject	Mark
16 (e)	Any one analysis of material from space / drug testing in sport / identify breakdown products from drugs in body / quality control in pharmaceutical industry / identify molecules from sample with potential biological activity / radioactive dating with context e.g determine age of fossils / human remains The uses above must have a context / determining M _r of a molecule / evidence for structure from fragmentation pattern		1

Question Number	Acceptable Answers	Reject	Mark
17 (a)	H : C : O : TH H : C		2

Question Number	Acceptable Answers	Reject	Mark
17 (b)(i)	C(s) / (graphite) + 2H ₂ (g) + 2O ₂ (g) Correct species (1) Allow oxygen above arrows rather than in box Balancing and state symbols (1) Second mark dependent on correct species except as below with either hydrogen or oxygen or both as atoms e.g C(s) / (graphite) + 4H(g) + 4O(g) Scores second mark		2

Question Number	Acceptable Answers	Reject	Mark
17 (b)(ii)	Enthalpy / energy / heat(energy) change when one mole of a substance (1)	heat required / heat given out / heat taken in	3
	Is formed from its elements (in their most stable / standard states) (1)		
	Under standard conditions of 298K/ 25 °C / any stated temperature AND 1 atm pressure / 101 kPa / 100 kPa (1)		
	Definitions based on lattice enthalpies may score third mark only		

Question Number	Acceptable Answers	Reject	Mark
17 (b)(iii)	$\Delta H_{c}^{\Theta} = -\Delta H_{1}^{\Theta} + \Delta H_{2}^{\Theta} (1)$		2
	= (2 x -285.8 + -393.5) - (-239.1) = -726 (1) Ignore units		
	Correct answer alone = 2 marks		
	+726 = 1		
	-440.2 = 1 if omit multiply by 2		

Question Number	Acceptable Answers	Reject	Mark
17 (c)(i)	20.7 x 200 x 4.18 = 17305(.2) (J) ignore sf except 1 sf i.e. 20000		1
	OR		
	20.7 x 200 x 0.00418 = 17.305(2) kJ ignore sf except 1 sf i.e. 20		
	ignore signs ignore mol ⁻¹		

Question Number	Acceptable Answers	Reject	Mark
17 (c) (ii)	0.848/32 = 0.0265 (mol)		1
	ignore sf except 1 sf i.e. 0.03		

Question Number	Acceptable Answers	Reject	Mark
17 (c)(iii)	17305.2/0.0265 = -653000 (J mol ⁻¹) (3sf)		1
	OR		
	–653 (kJ mol ⁻¹) (3sf)		
	Ignore missing units but penalise incorrect units		
	Allow TE from (c)(i) & (ii)		

Question Number	Acceptable Answers	Reject	Mark
17 (c)(iv)	Any two from As heat/energy absorbed by apparatus / heat/energy 'lost' to surroundings (1) methanol not completely burnt / incomplete combustion (1) methanol 'lost' by evaporation (1) cannot ensure all products are at standard conditions at end of reaction / water is produced as a gas / reaction not carried out in the standard conditions (1)	just heat/energy loss just incomplete reaction	2

Question Number	Acceptable Answers	Reject	Mark
18 (a)(i)	Crude oil / petroleum / coal	Oil on its own / Natural gas / fossil fuels / any named fraction of crude oil	1

Question Number	Acceptable Answers	Reject	Mark
18 (a)(ii)	use of high temperatures / heat (in the absence of air) / thermal decomposition / catalysts (1)		2
	Either		
	to break large molecules / to form smaller molecules / to break bonds in large molecules / to break carbon-carbon bonds (1)		
	OR		
	producing alkenes / producing carbon-carbon double bonds (1)		

Question Number	Acceptable Answers		Reject	Mark
18 (a)(iii)	Risks (2) Amendments (2) Risk	Amendment		4
	exposure to harmful / toxic fumes	Set up in fume cupboard	Dangerous	
	Escape of flammable / harmful / toxic reactants or products from ill fitting bung	Correct fitting of bung		
	Escape of flammable / harmful /toxic reactants or products from poorly positioned delivery tube	Placement of delivery tube below mouth of test tube / use a longer delivery tube	collect in syringe	
	suck back	Attach Bunsen valve / remove delivery tube from water before stopping heating etc		
	Mark all 4 points independe If escaping gases linked to mentioned then allow 1 for	2 amendments but no risk		

Question Number	Acceptable Answers	Reject	Mark
18 (b)(i)	Reagent - Hydrogen/H ₂ (1) Catalyst - Nickel/Ni/palladium/Pd/platinum/Pt (1) Mark independently		2

Question Number	Acceptable Answers	Reject	Mark
18 (b)(ii)	1,2 - dibromoethane (1)	1,2 - bromoethane dibromoethane	2
	ignore punctuation H H H-C-C-H Br Br (1)	Skeletal formula	
	Mark independently Allow CH ₂ BrCH ₂ Br	$C_2H_4Br_2$	

Question Number	Acceptable Answers	Reject	Mark
18 (b)(iii)	From purple / pink \rightarrow colourless	clear	1

Question Number	Acceptable Answers	Reject	Mark
18 (c)(i)	$\begin{array}{c} H = H \\ H = C = C \\ H \\ \hline \\ H \\$		3
	bromide ion must show negative charge	∂- on bromide ion for third mark	
	allow 2 max for addition of Br ₂ and any other electrophilic additions half headed arrows used throughout penalise only once		

Question Number	Acceptable Answers	Reject	Mark
18 (c)(ii)	Bromine / bromide / hydrogen could add to either carbon (in the double bond) / bromide / bromine could add to either primary or secondary carbocation / (propene is unsymmetrical) so could form 1-bromopropane and / or 2-bromopropane. Allow correct structural or displayed formulae.	bromine could add to any of the three carbons	1

Question Number	Acceptable Answers	Reject	Mark
	Acceptable Answers $\begin{array}{c} H & C_{6}H_{5} & H & C_{6}H_{5} \\ -C & -C & -C & -C \\ H & H & H & H \end{array}$ position of hydrogen atoms and phenyl groups (1) Allow phenyl groups on 2 nd and 3 rd carbon OR 1 st and 4 th OR 1 st and 3 rd carbon carbon single bonds and continuation bonds (1) second mark not awarded for incorrect monomer $\begin{array}{c} H & C_{6}H_{5} \\ I & I \\ -C & -I \\ H & H & -N \end{array}$ (1) max with or without square brackets and n or numbers Do not penalise H from phenyl groups attaching to carbon chains	Reject	Mark 2
	Ignore extra square brackets, numbers and 'n' provided 2 monomer units shown		

Question Number	Acceptable Answers	Reject	Mark
18 (e)(i)	Any two		2
	(raw material for) paper cup requires cutting down trees (1)		
	polystyrene cup uses less energy (280 kWh rather than 980 kWh) to produce so less CO ₂ released / less fossil fuels (1)		
	polystyrene cup releases less sulfur based compounds into air so less chance of forming acid rain / less chance of damaging buildings / acidifying lakes (produces 3.5 kg rather than 11 kg) (1)		
	polystyrene cup releases no chlorine compounds which damages ozone layer / poisonous (produce 0 kg rather than 0.4 kg) (1)		
	2 pieces of data chosen with no explanation allow 1 mark		
	Ignore comments regarding water		

Question Number	Acceptable Answers	Reject	Mark
18 (e)(ii)	2 additional factors e.g ease of recyclability whether cup is easy to reuse space taken up in landfill type and amount of gases formed if incinerated useful heat obtained if incinerated biodegradeability / how long they take to decompose management of gases produced during decomposition durability / how long the cup lasts method of disposal Ignore comments regarding atom economy Ignore comments regarding acid rain / ozone layer / greenhouse gases unless linked to gases produced during disposal		2

PMT

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u>

Order Code US023629 Summer 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH