

Mark Scheme (Results) January 2011

GCE

GCE Chemistry (6CH01/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 0844 576 0037

January 2011

Publications Code US026194

All the material in this publication is copyright © Edexcel Ltd 2011

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	В	1
	1	<u></u>
Question	Correct Answer	Mark
Number 2	C	1
2		<u> </u>
Question	Correct Answer	Mark
Number		
3	D	1
Question	Correct Answer	Mark
Number	COTTECT ATISWET	Wark
4 (a)	В	1
Question Number	Correct Answer	Mark
4 (b)	C	1
1 (5)		<u> ' </u>
Question	Correct Answer	Mark
Number		
5	В	1
Question	Correct Answer	Mark
Number		Wark
6 (a)	В	1
		T
Question Number	Correct Answer	Mark
6 (b)	A	1
- (-)		
Question	Correct Answer	Mark
Number		1
7 (a)	D	1
Question	Correct Answer	Mark
Number		
7 (b)	A	1
Question	Correct Answer	Mark
Number	COTTECT ATISWEI	IVIAI K
7 (c)	С	1
Question	Correct Answer	Mark
Number	Δ	1
8 (a)	A	I

Question	Correct Answer	Mark
Number		
8 (b)	A	1
		·
Question	Correct Answer	Mark
Number		
8 (c)	D	1
Question	Correct Answer	Mark
Number		
9	В	1
Question	Correct Answer	Mark
Number		
10	D	1
Question	Correct Answer	Mark
Number		
11	C	1
Question	Correct Answer	Mark
Number		
12	C	1
Question	Correct Answer	Mark
Number		
13	В	1
Question	Correct Answer	Mark
Number		
14	В	1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
15 (a)	Average/mean mass of an atom/isotopes (1) (1/12 mass of an atom of) carbon-12 (1)	"weight" instead of mass	2
	First mark: mention of mean or average mass of either an atom/isotopes IGNORE "weighted" before average or mean IGNORE any mention of "moles" in definition	mean or average mass of an element without prior mention of either an atom or isotopes	
	Second mark: any mention of carbon-12		
	IGNORE any reference to "moles" or "1 mole" at any stage		
	IGNORE 12 g with reference to carbon-12		
	Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
15 (b) (i)	(Rubidium/it has) two isotopes ALLOW (Rubidium/it has) "different isotopes"		1
	ALLOW abbreviations such as formulae of rubidium atoms or cations with isotopic masses		

Question Number	Acceptable Answers	Reject	Mark
15 (b) (ii)	85 x 72 + 87 x 28 (1) 100 = 85.56 or 85.6 (1) Correct answer with no working (2) NOTE: Rounding error giving answer 85.5 scores (1) IGNORE any units (for example, g/g mol ⁻¹ /%) NOTE: If 71% abundance used for ⁸⁵ Rb and 29% for ⁸⁷ Rb, answer = 85.58 or 85.6 scores (1) Second mark awarded if answer CQ correct on wrong abundances and /or wrong isotopic masses.	Calculation of simple arithmetic mean of 85 + 87 = 86 scores zero	2

Question Number	Acceptable Answers	Reject	Mark
16 (a) (i)	$H_2O + CO_2 \rightarrow H_2CO_3$ (Allow atoms in H_2CO_3 in any order) Or $H_2O + CO_2 \rightarrow H^+ + HCO_3^-$ Or $H_2O + CO_2 \rightarrow 2H^+ + CO_3^{2-}$ Or H_3O^+ in place of H^+		1

Question	Acceptable Answers	Reject	Mark
Number			
16 (a) (ii)	$2H^{+} + CO_3^{2-} \rightarrow H_2O + CO_2$	H ₂ CO ₃ as a product	2
	LHS (1) RHS (1)		
	OR	$H^+ + CO_3^{2-} \rightarrow HCO_3^-$	
	$2H_3O^+ + CO_3^{2-} \rightarrow 3H_2O + CO_2$		
	LHS (1) RHS (1)	Any other ions	
		including spectator	
	IGNORE STATE SYMBOLS, EVEN IF INCORRECT	ions (e.g. Ca ²⁺ , Cl ⁻) in	
	IGNORE ⇒ arrows	the equation scores	
	TOTORE - UTTOWS	zero	

Number 16 (b) (i) dilute hydrochloric acid measuring cylinder
Conical flask and a delivery tube leaving the conical flask (1) IGNORE "heat" beneath conical flask Inverted measuring cylinder with collection over water shown and cylinder above mouth of delivery tube (1) ALLOW collection over water to be shown/implied in the diagram without labels or other annotation

Question Number	Acceptable Answers	Reject	Mark
16 (b) (ii)	Any method which is likely to bring the reactants into contact after the apparatus is sealed	Method suggesting mixing the reactants and then putting bung in flask very quickly	1

Question	Acceptable Answers	Reject	Mark
Number			
16 (b) (iii)	$(224 \div 24000 =) 0.009333/9.333 \times 10^{-3} \text{ (mol)}$	"0.009" as answer	1
	Ignore SF except 1 SF		
	Ignore any incorrect units		

Question	Acceptable Answers	Reject	Mark
Number			
16 (b) (iv)	$CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + H_2O(I) + CO_2(g/aq)$		1
	ALL FOUR state symbols must be correct for this mark		

Question	Acceptable Answers	Reject	Mark
Number			
16 (b) (v)	(Mass of 1 mol $CaCO_3 = 40 + 12 + 3 \times 16$) = 100 g		1
	ALLOW just "100" ALLOW any incorrect units		
	ALLOW "100.1 g" OR just "100.1" (Reason: this uses the Periodic Table value of $A_r = 40.1$ for Ca)		

Question Number	Acceptable Answers	Reject	Mark
16 (b) (vi)	(Mass of CaCO ₃ = 100 x 0.009333) = 0.9333 (g) (1) IGNORE sig figs including 1 sf here NOTE: Moles of CaCO ₃ consequential on answers to (b)(iii) and (b)(v) [NOTE: if $A_r = 40.1$ used for Ca, then the answer = 0.9339 (g)] Percentage of CaCO ₃ in the coral	Final % answer is not	2
	= $100 \times 0.9333 / 1.13 = 82.6\%$ (1) NOTE: If mass CaCO ₃ used is 0.93, final answer is 82.3% [NOTE: if $A_r = 40.1$ used for Ca, then the answers = 0.9339 (g) and 82.7%]	given to 3 sf	

Question Number	Acceptable Answers	Reject	Mark
16 (b) (vii)	(Different samples of) coral have different amounts of CaCO ₃ /different proportions of CaCO ₃ / different "levels" of CaCO ₃	Answers that do not include any mention of CaCO ₃	1
	ALLOW "calcium carbonate" for CaCO ₃ OR	References to solubility of CO ₂ in water	
	Only one sample of coral (was) used	References to repeating the experiment at a different temperature	

Question Number	Acceptable Answers	Reject	Mark
17 (a)	(1s ² 2s ²) 2p ⁶ 3s ² 3p ⁵ (ignore repetition of 1s ² 2s ²)	287	1
	ALLOW subscripts, correct use of p_x , p_y and p_z orbitals or normal font for electrons		

Question Number	Acceptable Answers	Reject	Mark
17 (b) (i)	CI' XX	Covalent bonding (0)	2
	Correct number of outer electrons (ignore whether dots and / or crosses) drawn and also ratio of magnesium : chloride ions is 1:2 (1)	Incorrect numbers of electrons in inner shells if drawn for first mark	
	Correct formulae and charges of the ions shown somewhere (1)	"MG ²⁺ " and/or "CL ⁻ " for second mark	
	NOTE: Diagram for Mg ²⁺ showing the outermost shell with 8e ⁻ (dots and/or crosses) and/or Cl ⁻ shown with a 2 in front or 2 as a subscript would also score both marks		
	Mark the two points independently		

Question Number	Acceptable Answers		Reject	Mark
17 (b) (ii)	4 shared pairs of electrons around the carbon labelled C		Ionic bonding (0)	2
	All substitutions in the district of the substitution of the subst	(1)		
	ALL outer electrons, including lone pairs, are correctly shown on each of the four chlorine atoms labelled CI			
	atoms labelled of	(1)		
	ALLOW versions without circles			
	IGNORE lines between the shared electrons			
	Mark two points independently			

Question Number	Acceptable Answers	Reject	Mark
17 (b) (iii)	(Comparison of) charges: O ²⁻ ions whereas CI ⁻ ions OR Statement to the effect that oxide ion has a greater (negative) charge / greater charge density than the chloride ion (so the force of) attraction between ions is stronger in MgO (than MgCI ₂) / stronger ionic bonding in MgO (than MgCI ₂) (1)	Use of term chlorine and/or oxygen "atoms" or "molecules" (0) for answer overall	3
	More energy is required to separate the ions in MgO (than MgCl ₂) / more energy is required to break (ionic) bonds in MgO (than MgCl ₂) / (1) Mark the above three points independently NOTE ALTERNATIVE ANSWER WITH A MAXIMUM OF TWO MARKS:-	"More bonds need to be broken"	
	O ²⁻ (ions) smaller (than Cl ⁻ ions) (1) so (force of) attraction between ions is stronger in MgO (than MgCl ₂) /stronger ionic bonding in MgO (than MgCl ₂) (1) lgnore ANY references to polarization of ions / covalent character / degree of covalency. Mark the above two points independently	(0) for answer overall if mentions "intermolecular forces"	

Question Number	Acceptable Answers	Reject	Mark
17 (c)	First Mark:		2
	EITHER Magnesium reacts with chlorine to form only magnesium chloride/		
	magnesium reacts with chlorine to form only one product /		
	magnesium reacts with hydrochloric acid to form hydrogen (as well as magnesium chloride) /		
	magnesium reacts with hydrochloric acid to form more than one product /		
	magnesium reacts with hydrochloric acid to form a waste product		
	OR		
	Both equations $Mg + CI_2 \rightarrow MgCI_2$ and $Mg + 2HCI \rightarrow MgCI_2 + H_2$		
	IGNORE state symbols, even if incorrect (1)		
	Second Mark:		
	EITHER The reaction with chlorine has an atom economy which is higher /100%		
	ALLOW "high"		
	OR		
	Any mention of numbers comparing 100 % v. 97.9%		
	(1)		
	IGNORE any comments about yield		
	Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
18 (a)	$C_{10}H_{22} \rightarrow C_7H_{16} + C_3H_6$ ALLOW structural or displayed formulae instead of molecular formulae		1
	IGNORE any state symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
18 (b) (i)	diagram for the σ -bond e.g.		4
	First Mark: EITHER Diagram shows overlap of any-shaped orbitals along the line between the two nuclei OR Mentions/implies rotation around a sigma/single bond (1)	Just a line between the two nuclei	
	Second Mark: Any written mention, or clear evidence from the diagram (e.g. shading), of the resultant (high) electron density (along the line) between the two nuclei (1)		
	diagram for the π -bond e.g.		
	EITHER		
	C · C · C · C · C · C · C · C · C · C ·		
	Third Mark: EITHER Diagram shows two dumb-bell shaped (p-) orbitals(these can be separate dumb-bells or the diagram can show the p-orbitals overlapping sideways) OR Restricted /lack of /no rotation about a pi/double bond	Just curved lines above and below the two nuclei	
	Fourth Mark: Any written mention, or clear evidence from the diagram (e.g. shading), of the resultant (high) electron density above and below (the line between) the two nuclei (1)		

Question	Acceptable Answers	Reject	Mark
Number			
18 (b) (ii)	Electrophilic addition		1
	BOTH words needed		
	ALLOW "heterolytic" before electrophilic addition		

Question	Acceptable Answers		Reject	Mark
Number				
18 (b) (iii)	π bond weaker than σ (bond) / less energy			2
	needed to break π bond			
	ALLOW			
	π bond weak(er) / π bond easy to break	(4)		
		(1)		
	π - electrons / $π$ bonds (more) accessible (to			
	electrophilic attack)			
	crock opinio attacky			
	ALLOW			
	high/higher/more electron density in π bond			
	(so alkenes more susceptible to electrophilic			
	attack)			
		(1)		
	Mark the two points independently			

Question Number	Acceptable Answers	Reject	Mark
18 (c) (i)	H Br H H H H H H H H H H H H H H H H H H	CH₃ not fully displayed	2
	(main product)		
	both DISPLAYED structures, with ALL bonds and atoms shown		
	(1)		
	major product identified or shown as product in (c)(ii) if NOT identified in (c)(i) (1)	Incorrect name of isomer for 2nd mark	
	NOTE: if only one isomer of C_3H_7Br is named, assume this is the required "labelling" of the major product		
	Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	half	3
	Curly arrows must start from the bonds NOT the atoms 3 rd mark: Bromide ion must clearly have a 1 ⁻ charge to get this mark NOTE: The arrow from the bromide ion can start from anywhere on the Br ⁻ ion (including the minus sign) or from a lone pair on Br ⁻ if shown Curly arrow can go to the C or the + sign on the intermediate TE for mechanism on the isomer identified in (c)(i) or either mechanism if no major product has been identified in (c)(i) Mark the three points independently	arrow- heads Br ^{ð-}	

Question	Acceptable Answers		Reject	Mark
Number				
18 (c) (iii)	Secondary carbocation (named or described o drawn)	r (1)	Answers just in terms of Markownikoff's rule	2
	more stable (than primary)	(1)		
	Mark the two points independently			
	NOTE: Zero awarded if primary carbocation thought to be more stable			

Question Number	Acceptable Answers	Reject	Mark
18 (d) (i)	Two "n's" in the equation and a correct formula (molecular or structural) for propene on left hand side of the equation (1) Correct repeating unit, with a methyl branch shown (1) ALLOW CH₃ fully displayed or just as CH₃ Continuation bond at each end (with or without bracket shown in equation) (1) Unsaturated polymer scores max (1) Mark the three points independently	"x" instead of "n"	3
1	mark the three points independently	ĺ	

Question Number	Acceptable Answers	Reject	Mark
18 (d) (ii)	(Advantage): polypropene will decompose (naturally)	"Can be recycled" (0) for first scoring point	2
	ALLOW "rot" or "break down"	ror ringt sooring point	
	ALLOW TOU OF BLEAK GOWIT		
	OR	Biodegradable for 1 st mark	
	polypropene will not require landfill (as it can decompose in sunlight)	mark	
	OR		
	no need to incinerate /burn		
	IGNORE "good for environment" / "no pollution" (1)		
	(Disadvantage): poly(propene) cannot be used when exposed to (bright) sunlight / UV / outdoors	Answers which do not imply exposure to UV/sunlight	
	OR		
	cannot be recycled / cannot be reused (1)	Biodegradable for 2 nd mark	
	Mark the two points independently	man	

Question Number	Acceptable Answers	Reject	Mark
19 (a) (i)	(q = 250 x (31.5 - 21.0) x 4.18 =) 10972.5 (J) IGNORE sf except 1 sf IGNORE units even if incorrect IGNORE any sign at this stage ALLOW 10.97 (kJ)	10000 (J)	1

Question Number	Acceptable Answers	Reject	Mark
19 (a) (ii)	$(M_{\rm r}{\rm ethanol})=46$ (1)		3
	(Mass ethanol burned = 63.21 - 62.47 =) 0.74 (g)		
	ALLOW 63.21 – 62.47 as alternative to 0.74 (1)		
	(Amount of ethanol = $0.74 \div 46$ =) 0.0161 (mol) (1)	0.02 (mol) ethanol	
	NOTE: Moles of ethanol are CQ on molar mass and /or mass of ethanol burned		
	IGNORE sf except 1 sf		
	NOTE: Correct answer with no working /limited working scores (3)		
	Mark the three points independently		

Question Number	Acceptable Answers	Reject	Mark
19 (a) (iii)	Answer (i) ÷ (1000 x answer (ii)) (1)		2
	NOTE: Be aware of numbers held in calculator not corresponding to what is written in answer		
	Value and negative sign (1))	
	IGNORE sf except 1 sf		
	NOTE: Answer consistent with (a)(i) and (a)(ii) with no working scores (2)		
	<u>E.g.</u> $10.9725 \div (0.74 \div 46) = -682 \text{ (kJ mol}^{-1}\text{)}$		
	ALLOW Just kJ as the units		
	NOTE : If correct answer is given in J mol ⁻¹ , the units of J mol ⁻¹ must be clearly given for the second mark to be awarded.	Correct answer in J instead of J mol ⁻¹	

Question Number	Acceptable Answers	Reject	Mark
19 (b) (i)	100 x (1370 – Answer to (iii)) ÷ 1370 = value	Incorrect rounding of	1
	e.g. 100 x (1370 - 682) ÷ 1370 = 50.2 %	final answer (0)	

Question Number	Acceptable Answers		Reject	Mark
19 (b) (ii)	Any three from:			3
	Heat loss (from the beaker)/beaker not insulated/heat loss as no lid on beaker (containing the water) /no stirring	(1)	More accurate thermometer Just "experimental	
		()	/human error"	
	Incomplete combustion (of the alcohol)/formation of soot (on beaker)	(1)	Experiment carried out at a different	
	Not all of the energy from the flame is used heat the beaker and/or the water	d to	(laboratory) temperature	
	OR			
	Too large a distance between flame and be no draught excluder	aker /		
		(1)		
	Heat capacity of the beaker is neglected/beabsorbs heat/glass absorbs heat	eaker (1)		
	Evaporation of the (hot) alcohol	(1)		
	Evaporation of the (hot) water	(1)		

Question Number	Acceptable Answers		Reject	Mark
19 (b) (iii)	$2 C(s) + 3H_2(g) + \frac{1}{2} O_2(g) \rightarrow C_2H_5OH(I)$			3
	$2CO_2 + 3H_2O$ $\triangle H_f = 2 \times (-394) + 3 \times (-286) - (-1370)$ $= -276 \text{ (kJ mol}^{-1}\text{)}$			
	Correct expression or cycle	(1)		
	Evidence for both doubling ΔH_c^{θ} [C] and trebl ΔH_c^{θ} [H ₂]	ing (1)		
	Correct sign and answer	(1)		
	Correct answer with no working scores	(3)		
	Correct answer with an incorrect cycle	(3)		
	IGNORE units even if incorrect			
	Alternatively the following answers score as shown even with incorrect cycle or incorrect units			
	NOTE: (+)276 with or without working scores	(2)		
	(+)690 with or without working scores	(2)		
	-690 with or without working scores	(1)		
	-552 with or without working scores	(2)		
	-1134 with or without working scores	(2)		
	(+)1134 with or without working scores	(1)		
	(+)10 with or without working scores	(2)		
	REMINDER IF ANY OTHER ANSWER IS GIVEN: ALL WORKING MUST BE CHECKED TO SEE IF MARKS CAN BE AWARDED	ANY		

TOTAL FOR SECTION B = 60 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code US026194 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH