Please check the examination details below	v before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	re Number Candidate Number
Thursday 9 Janu	iary 2020
Morning (Time: 1 hour 30 minutes)	Paper Reference WCH11/01
Chemistry International Advanced Sub Unit 1: Structure, Bonding a Organic Chemistry	•
Candidates must have: Scientific calc Ruler	Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctation and spelling.
- There is a Periodic Table printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 How many protons, neutrons and electrons are in a ³⁷Cl⁻ ion?

⊠ A

В

⊠ C

 \bowtie D

Protons	Neutrons	Electrons
17	20	16
17	20	17
17	20	18
20	17	21

(Total for Question 1 = 1 mark)

2 A sample of an element **X** contains only the isotopes shown.

Isotope	Percentage abundance
⁵⁸ X	68.077
⁶⁰ X	26.223
⁶¹ X	1.140
⁶² X	3.634
⁶⁴ X	0.926

What is the relative atomic mass of element **X** to **three** decimal places in this sample?

■ A 58.760

■ B 58.8

C 59.4

(Total for Question 2 = 1 mark)

- 3 How many **orbitals** are there, in total, in the first three quantum shells of an atom?
 - **A** 3
 - **B** 6
 - **◯ C** 9
 - **D** 14

(Total for Question 3 = 1 mark)

- **4** Which element is in the **p-block** and has atoms containing **two** unpaired electrons in the ground state?
 - **A** lithium
 - B carbon
 - C fluorine
 - **D** titanium

(Total for Question 4 = 1 mark)

5 The first five ionisation energies of an element, in kJ mol⁻¹, are

578

1817

2745

11578

14831

This element could be

- **A** sodium
- B magnesium
- C aluminium
- **D** silicon

(Total for Question 5 = 1 mark)

- **6** What is the relative formula mass of hydrated barium hydroxide, Ba(OH)₂.8H₂O?
 - $[A_r \text{ values: Ba} = 137.3, O = 16.0, H = 1.0]$

 - **B** 203.3
 - **◯ C** 299.3
 - ☑ D 315.3

(Total for Question 6 = 1 mark)

7 An 11.0 g sample of anhydrous sodium sulfate, Na₂SO₄, is dissolved in deionised water to form 70 cm³ of solution.

What is the concentration, in mol dm⁻³, of Na₂SO₄ in the aqueous solution formed?

 $[M_r \text{ value: Na}_2 \text{SO}_4 = 142.1]$

- **■ A** 0.0011
- **■ B** 0.90
- **C** 1.1

(Total for Question 7 = 1 mark)

- 8 Which of these ionic compounds would be expected to have the **highest** melting temperature?
 - A NaF
 - B MgO

 - CaS

(Total for Question 8 = 1 mark)

- **9** Which of these compounds has the **greatest** covalent character?
 - \square **A** MgF₂
 - \square **B** MgI₂
 - ☑ C BaF₂
 - D BaI₂

(Total for Question 9 = 1 mark)

10 Barium chloride reacts with sodium sulfate:

$$BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$$

 $[M_r \text{ values: BaCl}_2 = 208.3, Na_2SO_4 = 142.1, BaSO_4 = 233.4, NaCl = 58.5]$

(a) What would you **see** when this reaction is carried out?

(1)

- A blue solution turns colourless
- **B** effervescence
- **C** no visible change
- **D** white precipitate
- (b) What is the ionic equation for this reaction?

(1)

- \square **A** Ba⁺(aq) + SO₄⁻(aq) \rightarrow BaSO₄(s)
- \square **B** Na⁺(aq) + Cl⁻(aq) \rightarrow NaCl(aq)
- \square **C** Ba²⁺(aq) + SO₄²⁻(aq) \rightarrow BaSO₄(s)
- \square **D** Ba²⁺(aq) + SO₄²⁻(aq) + Na⁺(aq) + Cl⁻(aq) \rightarrow BaSO₄(s) + NaCl(aq)
- (c) What is the maximum mass of $BaSO_4$ that could be produced from $0.500\,\mathrm{g}$ of $BaCl_2$ in this reaction?

(1)

- ☑ A 0.446 g
- **■ B** 0.500 g
- **☑ C** 0.560 g
- **☑ D** 0.821 g
- (d) What is the atom economy (by mass) for the formation of BaSO₄ in this reaction?

(1)

- **A** 33.3%
- **B** 62.2%
- **C** 66.6%
- **D** 80.0%

(Total for Question 10 = 4 marks)

- 11 Which of these forms of carbon does **not** contain delocalised electrons?
 - A diamond
 - C₆₀ fullerene
 - **C** graphene
 - **D** graphite

(Total for Question 11 = 1 mark)

- **12** Which of these molecules is polar?
 - \square A OF₂
 - \square **B** BF₃
 - C CF₄
 - \square **D** PF₅

(Total for Question 12 = 1 mark)

13 Which species has its correct shape and bond angle shown?

X	

⊠ В

⊠ C

 \square D

Species	Shape	Bond angle
CH ₃ ⁺	trigonal planar	120°
NH ₃	pyramidal	109.5°
NH ₄ ⁺	square planar	90°
H ₂ O	linear	180°

(Total for Question 13 = 1 mark)

14 Some equations for reactions used in reforming crude oil fractions are shown.

Which equation is **not** balanced?

(Total for Question 14 = 1 mark)

- **15** A pure alkane fuel is burned in air. Which substance is **not** a possible combustion product?
 - \boxtimes A H_2
 - B H₂O

 - ☑ D CO₂

(Total for Question 15 = 1 mark)

16 What is the number of σ bonds and π bonds in one molecule of this compound?

- X /
- **B**
- X C
- \times D

σ bonds	π bonds	
15	3	
39	3	
15	6	
39	6	

(Total for Question 16 = 1 mark)

17 The polymers shown are all made from single monomers.

Which polymer is made from a monomer that has geometric isomers?

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions.

	Write your answers in the spaces provided.	
18	This question is about the element chlorine.(a) Give the electronic configuration, using the s, p, d notation, for a chlorine atom in the ground state.	(1)
	(b) Write an equation for the first ionisation energy of chlorine. Include state symbols.	(2)
	(c) Explain the difference in the first ionisation energies of chlorine and bromine.	(3)

10

(d) Chlorine occurs naturally as a diatomic molecule.	
Draw a dot-and-cross diagram to show the bonding in a molecule of chlorine. Show outer shell electrons only.	(1)
() () ()	
(e) Chlorine is a gas at room temperature and pressure.	
(e) Chlorine is a gas at room temperature and pressure. Explain why chlorine has a low boiling temperature.	(2)
	(2)
Explain why chlorine has a low boiling temperature.	
Explain why chlorine has a low boiling temperature.	
Explain why chlorine has a low boiling temperature.	
Explain why chlorine has a low boiling temperature.	

- (f) Chlorine has two stable isotopes. The isotopes have mass numbers 35 and 37, with relative abundance in the ratio 3:1.
 - (i) Complete the mass spectrum for a sample of chlorine gas to show the expected molecular ion peaks due to Cl_2^+ .

(2)

(ii) Suggest why there could be a small peak at m/z = 36 in the mass spectrum of chlorine gas.

(2)

(Total for Question 18 = 13 marks)

- **19** This question is about the bonding, structure and properties of the elements in Period 3 of the Periodic Table and their compounds.
 - (a) A student plotted a graph to show the melting temperatures of the elements in Period 3.

(i) The student incorrectly plotted **two** values: one for a metal and one for a non-metal. Identify these elements, by name or formula.

(2)

melting temperature.	igh (3)
Aluminium has the greatest electrical conductivity of the Period 3 elements.(i) Describe how metals conduct electricity.	
	(2)
(ii) Give a possible reason why aluminium has a higher electrical conductivity	<i>I</i>
than sodium.	(1)

(c)	Aluminium	is extracted b	v the electrol	ysis of aluminium	າ oxide in the	liquid state.

(i) Draw a dot-and-cross diagram to show the bonding in aluminium oxide. Show outer shell electrons only.

(3)

(ii) Give a reason why aluminium oxide must be in the liquid state before electrolysis can occur.

(1)

(Total for Question 19 = 12 marks)

- 20 This question is about hexane, C_6H_{14} .
 - (a) The skeletal formula of hexane is

Draw the four structural isomers of hexane in the boxes.

(4)

Isomer 1	Isomer 2
Isomer 3	Isomer 4

- (b) Hexane reacts with bromine in the presence of ultraviolet radiation to form a mixture of bromoalkanes.
 - (i) Draw the initiation step of this reaction, using curly half-arrows.

(2)

(ii) Write equations for two propagation steps to show how $C_6H_{13}Br$ is formed. Curly arrows are **not** required.

(2)

(iii) Give the **molecular** formula of an alkane formed in a termination step in this reaction.

(1)

(iv) Calculate the percentage by mass of bromine in the heaviest molecule containing **six** carbon atoms that could form when hexane reacts with a **large excess** of bromine.

$$[A_r \text{ values: C} = 12.0, Br = 79.9]$$

(3)

(Total for Question 20 = 12 marks)

BLANK PAGE

- **21** This question is about ethene, C_2H_4 .
 - (a) The global production of ethene is about 150 million tonnes per year.

Calculate the number of **molecules** in 150 million tonnes of ethene.

[1 tonne = 1000 kg Avogadro constant =
$$6.02 \times 10^{23}$$
 mol⁻¹]

(2)

(b) Ethene is used commercially to speed up the ripening of bananas. Ethene levels of 100 parts per million (ppm) are used in ripening rooms.

Calculate the amount, in **moles**, of ethene in a ripening room of volume 220 m³ at a temperature of 21°C and pressure of 1.01×10^5 Pa.

Give your answer to an appropriate number of significant figures.

$$[pV = nRT R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}]$$

(5)

- (c) Ethene and chlorine react to form 1,2-dichloroethane.
 - (i) Draw the mechanism for the reaction between ethene and chlorine to form 1,2-dichloroethane.Include curly arrows, and relevant lone pairs and dipoles.

(4)

(ii) One hazard symbol for 1,2-dichloroethane is shown.

By identifying this hazard, give **one** way of minimising the risk when working with 1,2-dichloroethane in a laboratory.

Assume the use of safety goggles and a laboratory coat.

(2)

- (d) Ethene reacts with oxygen, O_2 , in the presence of a silver catalyst, to form compound \mathbf{Y} as the only product.
 - (i) When 10.0 g of ethene reacts completely with oxygen, the mass of compound **Y** formed is 15.7 g.

Calculate the empirical formula of Y.

You **must** show your working.

$$[A_r \text{ values: H} = 1.0, C = 12.0, O = 16.0]$$

(2)

(ii) Compound Y reacts with water to form compound Z.Compound Z is also produced in the reaction between ethene and acidified potassium manganate(VII).

Give the **displayed** formula of compound **Z**.

(1)

(e) Ethene reacts with buta-1,3-diene to form cyclohexene as the only product.

Complete the equation for the formation of cyclohexene from ethene and buta-1,3-diene using **skeletal** formulae.

(f) Two reactions of cyclohexene are shown.

(i) Classify the type of reaction occurring in Reaction 1.

(ii) Give the reagents and conditions needed for Reaction ${\bf 2}.$

(iii) Cyclohexanol is the product of Reaction 2.

Bond angle $a = 109.5^{\circ}$

Explain why bond angle b is smaller than bond angle a. Include the expected value for bond angle b in your answer.

.....

(3)

(Total for Question $21 = 23$ marks	(Total	for	Question	21	= 23	marks
-------------------------------------	--------	-----	----------	----	------	-------

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

0 (8)	(18) 4.0 He hellum 2	20.2 Ne neon	39.9 Ar argon 18	Kr Krypton 36	131.3 Xe xenon 54	[222] Rn radon 86	rted		
7	(17)	19.0 F fluorine 9	35.5 CL chlorine 17	79.9 Br bromine 35	126.9 I iodine 53	[210] At astatine 85	оеей геро	175 Lu lutetium 71	[257] Lr
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	Po Polonium 84	116 have b	173 Yb ytterbium 70	[254] No
Ŋ	(15)	14.0 N nitrogen 7	31.0 P	As As arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	Elements with atomic numbers 112-116 have been reported but not fully authenticated	169 Tm thulium 69	[256] Md
4	(14)	12.0 C carbon 6	Si Silicon 14	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb lead 82	atomic nun but not fu	167 Er erbium 68	[253] Fm
m	(13)	10.8 B boron 5	27.0 Al atumínium 13	Ga gallium 31	114.8 In indium 49	204.4 TI thallium 81	ents with	165 Ho holmium 67	[254] Es
			(12)	65.4 Zn zinc 30	Cd Cadmium 48	200.6 Hg mercury 80	Elem	163 Dy dysprosium 66	[251] [254] Cf Es
	(11) (11)			63.5 Cu copper 29	Ag silver 47	Au gold 79	Rg Reproperium	159 Tb terbium 65	[245] BK
				58.7 Ni nickel 28	106.4 Pd palladium 46	195,1 Pt platinum 78	[268] [271] [272]	157 Gd gadolinium 64	[247] Cm
				58.9 Co cobalt 27	Rh rhodium 45	192.2 Ir iridium 77	[268] Mt meitnerum 109	152 Eu europium 63	[243] Am
	1.0 Hydrogen 1		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190,2 Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[242] Pu
			54.9 Mn manganese 25	[98] Tc technetium 43	Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	[237] [242] [243] Np Pu Am	
	Key	relative atomic mass atomic symbol name atomic (proton) number	(9)	52.0 Cr chromium 24	95.9 [98] Mo Tc molybdenum technetium 42 43	183,8 W tungsten 74	Sg seaborgium 106	144 Nd neodymium 60	238 U
			(5)	50.9 V vanadium 23.	. E	180.9 Ta tantalum 73	[262] Db dubnium s 105	141 144 [147] 150 Pr Nd Pm Sm praseodymium promethium samarium 59 60 61 62	[231] Pa
			(4)	47.9 Ti	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf nutherfordium 104	Ce cerium p	232 Th
	(3)			Sc scandium 21	2 E	138.9 La* lanthanum 57	[227] Ac* actinium 89	, n	
2	(2)	9.0 Be berytlium 4	Mg magneslum 12	Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series	
-	3	6.9 Li lithium 3	23.0 Na sodium 11	39,1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* Lantha	