

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY

9701/52

Paper 5 Planning, Analysis and Evaluation

May/June 2022

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 30.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

1 A student plans an experiment to find a value for the molar volume, $V_{\rm m}$, of hydrogen gas at room conditions.

Hydrogen gas is formed when magnesium reacts with dilute hydrochloric acid, HCl(aq).

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

The student is provided with the following materials:

- a piece of magnesium ribbon
- 0.50 mol dm⁻³ HC*l*(aq)
- a water trough
- a side-arm conical flask
- a 250 cm³ measuring cylinder with 2 cm³ graduations for the collection of gas
- a 50 cm³ measuring cylinder
- a balance that measures to 2 decimal places
- access to any necessary laboratory equipment, except gas syringes.

The student plans the following procedure.

- **Step 1** Prepare the piece of magnesium ribbon for use in the experiment.
- **Step 2** Measure 30 cm³ of HC*l*(aq) and pour into a side-arm conical flask.
- **Step 3** Attach the conical flask to a collection system for the hydrogen gas.
- **Step 4** Place the magnesium ribbon in the conical flask.
- **Step 5** Stopper the flask.
- **Step 6** Wait until the final volume of gas collected is constant.
- **Step 7** Wait for an additional 2 minutes, then measure and record the final volume of gas collected.
- (a) Complete Fig. 1.1 to show how the apparatus should be assembled for the collection and measurement of gas.

 Label your diagram.

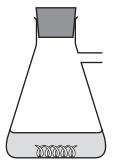


Fig. 1.1

[2]

PMT

(b)	The	surface of the magnesium ribbon has an oxide layer.
	(i)	State how the student should prepare the piece of magnesium ribbon before it is used in this experiment.
		[1]
	(ii)	State what additional information about the magnesium is required before the experiment is performed.
		[1]
(c)	(i)	Show by calculation that a volume of $30\mathrm{cm^3}$ of $0.50\mathrm{moldm^{-3}}$ HC $l(aq)$ is enough to react with $0.16\mathrm{g}$ of magnesium ribbon. Show your working.
		$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
		[2]
	(ii)	State why it is not necessary to use a burette to measure $30\mathrm{cm^3}$ of $0.50\mathrm{moldm^{-3}}$ HC $\mathit{l}(aq)$.
		[1]
(d)	The	student waits for 2 minutes before taking a reading of the volume.
	Sug	gest why the student waits for 2 minutes before measuring the volume of gas in step 7 .
		[1]

4

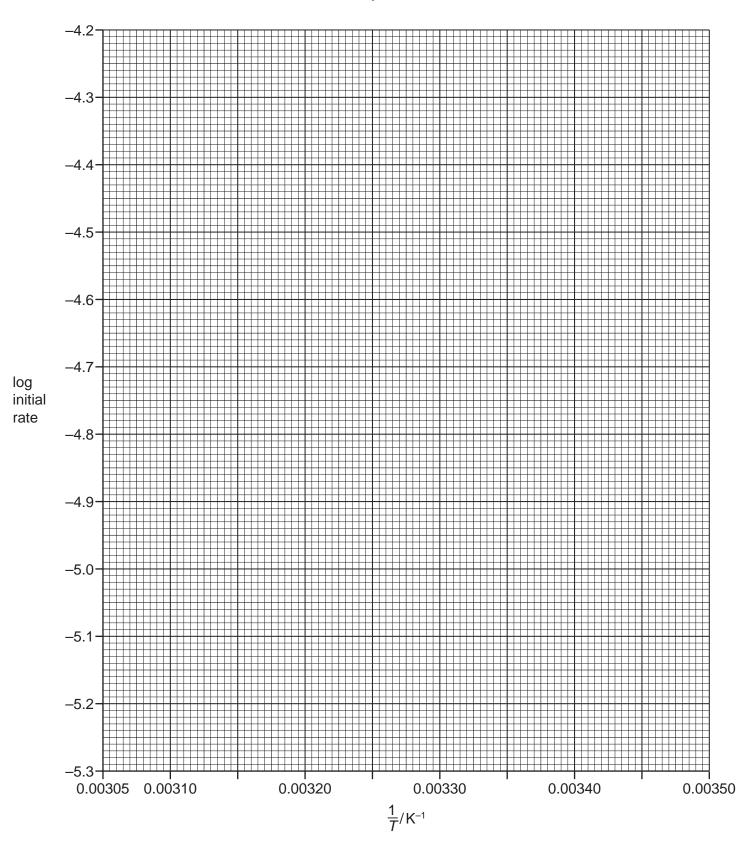
(e)	The	e student collects 146 cm³ of hydrogen gas during the experiment.
	(i)	Calculate the percentage error in collecting the hydrogen gas. Show your working.
		percentage error = [1]
	(ii)	Calculate the molar volume of hydrogen gas using the student's results from this experiment.
		molar volume = cm ³ [1]
(f)		e student's experimental value for the molar volume of hydrogen is lower than the value of the table of important values, constants and standards on page 11.
	Sug	ggest one experimental weakness that might have led to this outcome.
	Exp	plain how the method could be improved to overcome the weakness you have noted.
	exp	perimental weakness
	inan	
	шр	provement
		[2]
		[Total: 12]

2 In a neutral solution, aqueous potassium iodide acts as a catalyst for the decomposition of aqueous hydrogen peroxide.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

A student plans to carry out an investigation to find how temperature affects the initial rate of the decomposition of aqueous hydrogen peroxide, $H_2O_2(aq)$, in the presence of aqueous potassium iodide, KI(aq).

The student knows that the initial rate of the reaction can be measured by timing the production of the oxygen. The student carries out a series of experiments.


In experiment 1 the student notes the temperature of the $H_2O_2(aq)$ and KI(aq) under room conditions. The solutions are mixed in apparatus designed to collect the oxygen produced. A stop-watch is started at the beginning of the reaction. The volume of oxygen is noted at regular time intervals.

In experiments 2–8 the solutions are heated to different temperatures before mixing and measurement of the oxygen produced.

The data collected is used to determine a value for the activation energy of the decomposition of $H_2O_2(ag)$ in the presence of KI(ag).

112	$J_2(ac)$	() In the presence of M(aq).
(a)	Sta	te the independent variable.
		[1]
(b)	Sta	te two variables that need to be controlled.
	1	
	2	
		[2]
(c)	(i)	State how the student should prepare $250.0\mathrm{cm^3}$ of $0.100\mathrm{moldm^{-3}}$ $H_2O_2(aq)$ from $0.500\mathrm{moldm^{-3}}$ $H_2O_2(aq)$.
		Calculate the minimum volume of $0.500\mathrm{moldm^{-3}}H_2O_2(aq)$ required for preparation of the $0.100\mathrm{moldm^{-3}}H_2O_2$ solution. Give the name and capacity of any key apparatus which should be used.
		Write your answer as a series of numbered steps.

(ii) H	ydrogen peroxid	de causes eye a	nd skin irritation.		
	tate what preca earing goggles.		e taken when prepa	aring the solution	n in (c)(i) other than
					[1]
(d) (i) T	he student perfo	orms experimen	ts 1–8 using a rang	e of temperature	es.
Т	he results are sl	hown in Table 2	.1.		
C	omplete the tab f log initial rate t	ole and record the contract of	he values of $\frac{1}{T}$ to th ant figures.	ree significant fiç	gures and the values
			Table 2.1		
experiment number	temperature /°C	temperature /K	$\frac{1}{T}/K^{-1}$	initial rate /mols ⁻¹	log initial rate
1	20	293		5.75 × 10 ⁻⁶	
2	25	298		7.94 × 10 ⁻⁶	
3	30	303		1.17 × 10 ⁻⁵	
4	35	308		1.45 × 10 ⁻⁵	
5	39	312		2.19 × 10 ⁻⁵	
6	46	319		3.72 × 10 ⁻⁵	
7	52	325		5.25 × 10 ⁻⁵	
8	55	328		6.31 × 10 ⁻⁵	
					[2]
			the relationship bet point. Draw a line		ate and $\frac{1}{T}$. [2]
(iii) C	ircle the point o	n the graph you	consider to be mos	st anomalous.	
	uggest one rea	ason why this	anomaly may have	e occurred durir	ng this experimental

	(iv)	Determine the gradient of your line of best fit. State the coordinates of both points you used in your calculation. These must be selected from your line of best fit. Give the gradient to three significant figures.
		coordinates 1 coordinates 2
		gradient = K [2]
	(v)	The relationship between log initial rate and $\frac{1}{T}$ is given by the expression:
		$log initial rate = constant - \frac{E_a}{2.303 RT}$
		Use the gradient calculated in (d)(iv) to calculate a value for the activation energy, $E_{\rm a}$.
		(If you were unable to obtain an answer to (d)(iv) you may use the value –3100 K. This is not the correct value.)
		$E_{\rm a} = \dots k J \text{mol}^{-1} [2]$
(e)	It is	s not possible to repeat the investigation.
	Sta	te whether the data from the investigation is reliable. Justify your answer.
		[1]
		[Total: 18]

9

BLANK PAGE

10

BLANK PAGE

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 {}^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

The Periodic Table of Elements

	18	δ Ε 2	<u> </u>	0.	o .	<u>e</u>	30n).2	<u>∞</u>		argon 39.9	9,	<u>ر</u>	pton 3.8	7.	(e)	non 1.3	9,	ر ا	uop -	18	g (esson	
	_	1	- he	4 .	_	_	% ue		٩.	36 36	(6)	<u> </u>	Ž 89	4)	×	13 ×e	ω	<u>~</u>	rac	+	_	ogan	
	17			•	၈ L	_	fluorine 19.0	17	Cl	chlorine 35.5	35	Ŗ	bromine 79.9	53	Ι	iodine 126.9	85	Ą	astatine	117	<u>s</u>	tennessine -	
	16				∞ (0	oxygen 16.0	16	ഗ	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	28	Ьо	polonium –	116	_	livermorium -	
	15			,	\ Z	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	<u>:</u>	bismuth 209.0	115	Mc	moscovium	
	14			•	ဖ (ט	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	S	tin 118.7	82	Ъ	lead 207.2	114	Εl	flerovium -	
	13				ω (n	boron 10.8	13	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	18	l_l	thallium 204.4	113	£	nihonium	
				L						12	30	Zu	zinc 65.4	48	ρ	cadmium 112.4	80	Нg	mercury 200.6	112	ű	copernicium	
										1									gold 197.0				-
dr										10									platinum 195.1			ε	
Group										o	27	ဝိ	cobalt 58.9	45	R	rhodium 102.9	77	ľ	iridium 192.2	109	¥	E	
		- ⊐	hydrogen	1.0						80	56	Pe	iron 55.8	44	Ru	ruthenium 101.1	92	SO	osmium 190.2	108	£	hassium	
										7	25	Mn	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	В	bohrium	
					_	<u></u>	· ·			9	24	Ö	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium	
			, Co	יוסא	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	g	niobium 92.9	73	<u>ra</u>	tantalum 180.9	105	90	dubnium	
					at	aton	relati			4	22	F	titanium 47.9	40	Z	zirconium 91.2	72	士	hafnium 178.5	104	峜	rutherfordium -	
				L				J		က	21	လွ	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids		
	2				4 (Re	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium	
	_				ო -	_	lithium 6.9	1	Na	sodium 23.0	19	×	potassium 39.1	37	Rb	rubidium 85.5	22	S	caesium 132.9	87	ь Г	francium	

7.1	Ρſ	lutetium 175.0	103	ר	lawrencium	ı	
70	Хþ	ytterbium 173.1	102	N _o	nobelium	ı	
69	T	thulium 168.9	101	Md	mendelevium	ı	
89	ш	erbium 167.3	100	Fm	ferminm	ı	
29	웃	holmium 164.9	66	Es	einsteinium	I	
99	ò	dysprosium 162.5	86	ర	californium	I	
99	ТР	terbium 158.9	26	益	berkelium	I	
64	P G	gadolinium 157.3	96	Cm	curium	ı	
63	En	europium 152.0	92	Am	americium	ı	
62	Sm	samarium 150.4	94	Pn	plutonium	ı	
61	Pm	promethium -	93	ď	neptunium	ı	
09	PΝ	neodymium 144.4	92	⊃	uranium	238.0	
69	Ą	praseodymium 140.9	16	Pa	protactinium	231.0	
58	Ce	cerium 140.1	06	드	thorium	232.0	
22	Гa	lanthanum 138.9	88	Ac	actinium	ı	

lanthanoids actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.