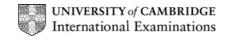
PMT

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

Specimen for 2007


GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY PRACTICAL

Page 2 Section A			2	Mark Scheme S GCE A LEVEL – 2007			Syllabus 9701	Paper 4		
			ŀ					· · ·		
			2 x 80g of	f Br₂ pr	oduce 24 dm ³ of CC) ₂		(1)		
			Thus 3.2 (g of Br	will produce $\frac{3.2x^2}{2x8}$	$\frac{24}{0} = 0.48 \text{ dm}^3$		(1)		
		(ii)	Colorimet OR	rically	withdraw samples p measure absorban plot absorbance ag	ce		(1) (1) (1)		
			lodometri	cally :	oxidising I ^{Γ} to I ₂ by Br ₂ titrating with thiosu	phate		(1) (1) (1)		
			(Allow titra	ation of	H^+ or evolution of C	CO ₂ if some mention	of solubili	ty.)		
	(b)	(i)			constant half-life aph that t(1/2) is co	nstant		(1) (1)		
		(ii)	Rate = [Bi	r ₂]				(1)		
		(iii)			surements of half-lif ean (say 200 secs)	e from first graph		(1) (1)		
									Total	
2	(a)	cha	ne standard enthalpy change of formation of a compound is the en nange when one mole of a compound is formed (under standard co om its elements in their standard states.)	
	(b)	Sui	able cycle	clearly	labelled showing al	I three values				
	(c)	(i)	298 kJ ma	ol⁻¹				(1)		
		(ii)			Si-C <i>l</i> bond energy is s under standard co			(1)		
	(d)	(i)	SiC <i>l</i> ₃H +	• H ₂ -	→ Si + 3HC <i>l</i>			(1)		
		(ii)	Per Si-hal therefore the more end of ΔH_{reac}	l bond, the rea endothe _{ction} : for	ooklet, $E_{Si-Cl} = 359$, for SiC l_3 H, Δ H= 359 ction with SiBr ₃ H will ermic (1) r SiC l_3 H, Δ H _{reaction} = - reaction is more end	- 431 = -72, for SiE Il be less exothermid + 96, and for SiBr ₃ H	Br₃H, ∆H = c i.e. overa	298 - 366 = all reaction	• • •	
		(iii)			emiconductors (or e			(1)		
		. ,			•	- /				

[4]

	Ρ	age	3		yllabus	Paper
				GCE A LEVEL – 2007	9701	4
3	(a)	Ca	CO3 —	\rightarrow CaO + CO ₂	(1)	
		Ca	O + H ₂ 0	$D \longrightarrow Ca(OH)_2$	(1)	[2]
	(b)	Το	neutralise	e acid soils	(1)	[-]
	(~)			coil 'quality' by precipitating clays (or equivalent)	(1)	[2]
	(c)	The	e tempera	ture increases	(1)	[-]
	(-)	As	the Group	o is descended, the cation increases in size of the cation to polarise the anion decreases, increasing	(1)	
			•	f the carbonate.	(1)	[3]
	(d)	(i)	CaMg(C	$O_3)_2 + 4HCl \longrightarrow CaCl_2 + MgCl_2 + 2CO_2 + 2H_2O$	(1)	
	. ,			omite is 40 + 24 + (2 x 60) = 184	(1)	
			184 g of	dolomite should produce 2 x 44 g of CO ₂		
			Hence 1	g of dolomite should give $\frac{88}{184}$ g of CO ₂ = 0.478 g		
			% purity	of the dolomite is $\frac{0.450 \times 100}{0.478} = 94.1\%$	(1)	
						[3]
4	(a)	(i)	[Ar] 3d ¹⁰	4s ¹		Total : 10
		(ii)	[Ar] 3d ¹⁰			
		(iii)	[Ar] 3d ⁹			[2]
	(b)	Any • •	colour de d-orbital light abs this need	he following points: ue to absorption of certain visible frequencies s are split into two groups by presence of ligands orbed when e ⁻ moves from lower to higher orbital ds a gap in the higher orbital, so d ¹⁰ in Cu(I) is not coloured is blue, then photons absorbed must be red ones		[4]
(c)	(i)	(N⊢	$H_3 + H_2O$	+ $2OH^{-} \longrightarrow [Cu(H_2O)_4(OH)_2] + 2H_2O$ $\longrightarrow NH_4^{+} + OH^{-})$ H) ₂] + $4NH_3 \longrightarrow [Cu(NH_3)_4]^{2+} + 2OH^{-} + 4H_2O$ $(or \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+})$	(2)	
	(ii)		-	and exchange reactions. Inged for OH ⁻ , and H ₂ O and OH ⁻ are exchanged for NH ₃ .	(2)	[4]
					、 <i>/</i>	
						[Total : 10]

DNA	Т
L IVI	1

	Page 4		L I	Mark Scheme	Syllabus	Paper
				GCE A LEVEL – 2007	9701	4
5	(a)			als forces increase with the number of electrons present ows larger dipoles and hence stronger attractive forces	(1) (1)	[2]
	(b)	• •	Descripti Use of E	on of C l , Br ⁻ , and I ⁻ with conc sulphuric acid	3 x (1) (1)	
			Descripti Use of <i>E</i>	on of HC <i>l</i> , HBr and HI ∘	3 x (1) (1)	[8]
						Total : 10

6 (a)

(a)	· · · · · · · · · · · · · · · · · · ·		-				
	element	%	Ar	% / A _r	ratio		
	С	40.0	12	3.33	1		
	н	6.65	1	6.65	2		
	0	53.3	16	3.33	1		
							[1]
(b) (i)	It contains an as	symmetric carbo	on atom		(1)	
(ii)	It contains a car	boxylic acid gro	oup		(1)	
(iii)	It contains a CH	l₃CH(OH)- or Cl	H₃CO- grou	o	(1)	
							[3]
(c) Dis	played formula o	f 2-hydroxyprop	anoic acid				[1]
(d) Dis	played formula o	f the ketone of t	he above				[1]
• •	played formula o	f the cyclic di-es	ster			(1)	
Est	er			(1)	[2]	
	played formula o		anoic acid			(1)	
0	mpound C is CH=	-UNU2 N			(1)	[2]
							T () (0)

Total : 10

P٨	ЛΤ
1 1	// /

Page 5 Mark Scheme Syllabus Pap							
			GCE A LEVEL – 2007	9701	4		
(a)	(i)	1. amine	2. carboxylic acid				
		3. amide	4. ester	(2)			
	(ii)	Both can	form ions (both polar groups) by gain or loss of a	(1)			
				(1)	[4]		
(b)	(i)	Allow cor	nc. HC <i>l</i> <u>and</u> heat or conc. NaOH <u>and</u> heat	2 x (1)			
	(ii)	Diagram	s of aspartic acid, phenylalanine and methanol	3 x (1)	[5]		
(c)	It co	ould be de	composed/hydrolysed during cooking		[1]		
					Total :10		
			Section B				
(a)	6 po	oints from	the following :				
		 mR mR mR tRN ami 	NA reads the 'code'/base sequence on the DNA NA moves out of the nucleus NA binds to the ribosome IA binds to amino acids ino acids are transferred to ribosome and joined to growi	ng chain	[6]		
(b)	Eac	ch amino a	acid needs 3 bases to code for it	(1)			
	3 x	129 = 387	7, which leaves 3 bases to code for Start and 3 for Stop	(1)	[2]		
(c)	(i)	sicklthallcysti	e cell disease assemia ic fibrosis				
		 haer 	nophilia etc.	(1)			
	(ii)	DefoRest	ormed red blood cells tricts production of haemoglobin				
				(1)	[2]		
					Total : 10		
((b) c) a)	 b) (i) (ii) c) It co a) 6 po b) Eac 3 x c) (i) 	 3. amide 3. amide 1. amine Both can proton froing 6 points from 6 points from 2 stant 1t could be det mR mR mR tRN ami unti tRN ami unti tRN ami translation 	 a) (i) 1. amine 2. carboxylic acid 3. amide 4. ester (ii) 1. amine 2. carboxylic acid Both can form ions (both polar groups) by gain or loss of a proton from water or form hydrogen bonds with water b) (i) Allow conc. HC<i>i</i> and heat or conc. NaOH and heat (ii) Diagrams of aspartic acid, phenylalanine and methanol c) It could be decomposed/hydrolysed during cooking Section B a) 6 points from the following : 2 strands of DNA separate mRNA reads the 'code'/base sequence on the DNA mRNA moves out of the nucleus mRNA binds to the ribosome tRNA binds to the ribosome tRNA binds to amino acids amino acids are transferred to ribosome and joined to growi until Stop codon is reached b) Each amino acid needs 3 bases to code for it 3 x 129 = 387, which leaves 3 bases to code for Start and 3 for Stop c) (i) A variety of answers possible e.g. sickle cell disease thallassemia cystic fibrosis haemophilia etc. (ii) A suitable symptom e.g. Deformed red blood cells 	a) (i) 1. amine 2. carboxylic acid 3. amide 4. ester (2) (ii) 1. amine 2. carboxylic acid (1) Both can form ions (both polar groups) by gain or loss of a proton from water (1) gr form hydrogen bonds with water (1) b) (i) Allow conc. HC <i>l</i> and heat or conc. NaOH and heat 2 x (1) (ii) Diagrams of aspartic acid, phenylalanine and methanol 3 x (1) c) It could be decomposed/hydrolysed during cooking Section B a) 6 points from the following : 2 strands of DNA separate mRNA moves out of the nucleus mRNA moves out of the nucleus mRNA binds to the ribosome tRNA binds to the ribosome t tRNA binds to amino acids amino acids are transferred to ribosome and joined to growing chain until Stop codon is reached (1) b) Each amino acid needs 3 bases to code for it (1) 3 x 129 = 387, which leaves 3 bases to code for Start and 3 for Stop (1) c) (i) A variety of answers possible e.g. sickle cell disease t tallassemia cystic fibrosis c cystic fibrosis haemophilia etc. (1) (ii) A suitable symptom e.g. Deformed red blood cells Restricits productio		

Mark Scheme Page 6 Syllabus Paper GCE A LEVEL - 2007 9701 4 9 % %/A_r Ratio (a) С 78.7 6.56 **Empirical formula** 8 Н 8.2 8.2 10)(1) C₈H₁₀O (1) 0 13.1 0.82 1 $M_{\rm r}$ = 122, hence this molecular formula Molecular formula is C₈H₁₀O (1) [3] **(b)** 1.2δ - CH₃ (1)**2.5**δ - CH₂ (1) **5.5**δ - OH (1) 6.8δ aryl hydrogens x 4 (1) Hence structure is CH₃CH₂-OH (1)(or ethyl phenol isomers) [5] (c) Peak at 5.5 δ would disappear (1)Due to rapid exchange with D⁺ which does not absorb here (1) [2] (d) CH₃OCH₂ or isomers (1) Two sensible suggestions [3] (2)**Total : 12 10 (a)** Can be used as a fuel (for generating electricity) (1) Can be hydrolysed (using acid or enzymes) and the sugars fermented (1) [2] (b) Carbon dioxide [1] (c) $(C_6H_{10}O_5)_n$ + $nH_2O \rightarrow nC_6H_{12}O_6$ [1] (d) Ethanol has an –OH group and so can be washed away Gasoline is a hydrocarbon and is not soluble in water Gasoline requires detergent which can add to the pollution Ethanol is biodegradable (any 3) [3]