

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/42 October/November 2018

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

PMT

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

PMT

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

October/November 2018

Question			Answer		Mark
1(a)(i)		peak	organic compound	explanation	
		J	carboxylic acid	most polar	
		К	ketone	polarity between J and L	
		L	alkene	most non-polar	
	peak assignments [1] explanation of J or L [1]				
1(a)(ii)	% of K = 18/92 = 19.6%				
1(b)(i)	$Cl_2 + AlCl_3 \rightarrow Cl^+ + AlCl_3$	C <i>l</i> 4-			
1(b)(ii)	$(1) \xrightarrow{CI^{+}} (1) \xrightarrow{CI^{+}} (1) \xrightarrow{CI^{+}} (1) \xrightarrow{CI^{+}} (1) \xrightarrow{CI^{+}} (1) \xrightarrow{CI^{+}} (1) \xrightarrow{I} (1)$				
		curly ar			
1(b)(iii)	$H^{+} + AlCl_{4}^{-} \rightarrow AlCl_{3} + HCl$				
1(c)(i)	catalyst and the reactants are in the same phase / state				
1(c)(ii)	(Rh) heterogeneous AND (R	=e ³⁺) homogeneo	us		

	PUBLISHED	
Question	Answer	Marks
2(a)	3d 4s	2
	Cu [Ar] 1 1 1 1 1 1	
	Cu ²⁺ [Ar] 1 1 1 1 1 [1] [1] × 2	
2(b)(i)	orbitals have the same energy	1
2(b)(ii)	d-d splitting seen, leading to 2 upper and 3 lower orbitals	
2(c)	an ion / molecule that donates two pairs of electrons	
2(d)	One correct [1] two correct and mirror images of each other [1]	

Question	Answer	Marks
3(a)(i)	solution of A $[Co(NH_3)_6]^{2+}[1]$ precipitate B $CoCO_3[1]$	2
3(a)(ii)	NaOH(aq) / OH⁻(aq)	1
3(a)(iii)	$[Co(H_2O)_4(OH)_2] + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 4H_2O + 2OH^-$	1

Question	Answer	Marks
3(a)(iv)	$[Co(H_2O)_6]^{2+} + CO_3^{2-} \rightarrow CoCO_3 + 6H_2O$	1
3(b)(i)	variable oxidation states	1
3(b)(ii)		1
3(b)(iii)	$C_4H_4O_6^{2-}$ + 3[O] $\rightarrow 2HCO_2^-$ + 2CO ₂ + H ₂ O	1
3(c)(i)	$H_{3}N \xrightarrow{CI} \xrightarrow{CI} \xrightarrow{Pt} \underbrace{CI}_{H_{3}N} \xrightarrow{Pt} \underbrace{CI}_{CI}$ cis trans square planar shape of one isomer [1] both isomers drawn and assigned as cis and trans correctly [1]	2
3(c)(ii)	this can react / bond / bind with DNA [1] which prevents replication of the strand / prevents cell division / prevents mitosis [1]	2
3(d)	$H_{3}N$ Pt O	1

October/November 2018

9701/42

Cambridge International AS/A Level – Mark Scheme PUBLISHED

	FOBLISHED	
Question	Answer	Marks
4(a)	$Ca_3N_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2NH_3$ products are $Ca(OH)_2$ and $NH_3[1]$ rest of the equation, balanced [1]	2
4(b)	M1 : solubility increases (down the Group) [1] M2 : because lattice energy and hydration energy decreases or lattice energy and hydration energy become less exothermic / (more) endothermic [1] M3 : because lattice energy decreases to a greater extent (than does ΔH_{hyd}) [1]	3
4(c)	aqueous ions ΔH_{hyd} gaseous ions ΔH_{sol} ΔH_{latt} ionic solid arrow label and direction correct [1] x 3	3
4(d)(i)	$K_{sp} = [Ca^{2+}][F^{-}]^{2} [1]$ units = mol ³ dm ⁻⁹ [1]	2
4(d)(ii)	$K_{sp} = 4x^3 = 3.45 \times 10^{-11}$ x= 2.05 × 10 ⁻⁴ (mol dm ⁻³)	1

October/November 2018

Question	Answer	Marks
5(a)	ionic radius / ion size increases OR charge density decreases (down the group) [1]	2
	less polarisation / distortion of anion / nitrate ion / NO_3^- / nitrate group OR	
	N-O / N=O bond is less weakened / distorted / polarised	
	OR more energy to break N-O / N=O bond [1]	
5(b)	 moles of Ce⁴⁺ = 0.0400 × 21.8 / 1000 = 8.72 × 10⁻⁴ (moles of Ce⁴⁺) moles of NO₂⁻ = 8.72 × 10⁻⁴ / 2 = 4.36 × 10⁻⁴ in 25 cm³ (use of 2:1 ratio correctly) moles of NO₂⁻ = 4.36 × 10⁻⁴ × 4 = 1.74(4) × 10⁻³ in 100 cm³ (use of 4:1 ratio correctly) mass NaNO₂ = 1.74(4) × 10⁻³ × (23.0 + 14.0 + 32.0) = 0.120 g (use of M_r correctly) % purity = 0.120 / 0.138 = 86.96% (use of 0.0138 correctly) 	3
	two points = [1] four points = [2] all five points = [3]	
5(c)(i)	$5NO_2^- + 2MnO_4^- + 6H^+ \rightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$ OR $5HNO_2 + 2MnO_4^- + H^+ \rightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$:
	all species correct [1] balanced [1]	
5(c)(ii)	<i>E</i> ^e _{cell} = 1.52 − 0.94 = 0.58 (V)	
5(d)(i)	weak acid is partly ionised and strong acid is completely ionised	
5(d)(ii)	$K_{\rm a} = \frac{[{\rm H}^+][{\rm NO}_2^-]}{[{\rm HNO}_2]}$	1
5(d)(iii)	$\begin{aligned} &\mathcal{K}_{a} = [H^{+}]^{2} / [HNO_{2}] \\ &[H^{+}] = \sqrt{0.00069 \times 0.15} = 1.02 \times 10^{-2} [1] \\ &pH = -log[H^{+}] = \textbf{2.0 (1.99)} [1] \text{ minimum 2 sigificant figures} \end{aligned}$	2
5(d)(iv)	% ionisation = $100 \times 1.02 \times 10^{-2} / 0.15 = 6.7 - 6.8$ %	1

Question	Answer	Marks	
5(e)(i)	M1 A solution that resists changes in pH [1] M2 when small amounts of acid or alkali are added to it [1]		
5(e)(ii)	$\begin{array}{rcl} \textbf{M1} \ \textbf{HNO}_2 \ \textbf{+} \ \textbf{OH}^- \rightarrow \ \textbf{NO}_2^- \ \textbf{+} \ \textbf{H}_2\textbf{O} \ \textbf{[1]} \\ \textbf{M2} \ \textbf{NO}_2^- \ \textbf{+} \ \textbf{H}^+ \rightarrow \ \textbf{HNO}_2 \ \textbf{[1]} \end{array}$		
5(f)(i)	CuCN/copper(I) cyanide	1	
5(f)(ii)	$H_{3}C$ $H_{2}C$ $H_{2}C$ $H_{2}C$ $H_{2}C$ $H_{2}C$ $H_{2}C$ F $I = I = 2$	2	
5(g)	number of peaks	2	
	W 6		
	Z 3		
	[1] × 2		

Question	Answer	Marks
6(a)(i)	KCN/NaCN/CN ⁻	1
6(a)(ii)	step 1 PC <i>l</i> ₃ + heat / PC <i>l</i> ₅ / SOC <i>l</i> ₂ [1] step 4 NaBH ₄ [1]	2
6(b)(i)	$ \begin{array}{c} & & \\ & & $	2
6(b)(ii)	step I condensation [1] step II reduction [1]	2
6(c)	$\begin{array}{c} & & & \\ & &$	2

October/November 2018

Question		А	Inswer	Marks
7(a)(i)	$C_{15}H_{10}N_2O_2$			1
7(a)(ii)	O C C H -NH-CO-O- linkage	CH ₂ -CH ₂ -	О Н Н -NСО H Н Н Н	2
7(a)(iii)		intermolecular force	group(s) involved	2
		hydrogen bonding	NH	
		VDW forces / Induced dipole-dipole forces / polar forces	-C ₆ H ₄ CH ₂ - allow benzene / aromatic rings	
	M1 hydrogen bond M2 NH group for h	ing [1] ydrogen AND second correct IMF [1]		
7(b)			example	3
7(b)		ydrogen AND second correct IMF [1]	example nylon / Kevlar	3
7(b)		ydrogen AND second correct IMF [1]		3
7(b)		ydrogen AND second correct IMF [1] type of polymer synthetic polyamide	nylon / Kevlar	3

Question	Answer	Marks
8(a)(i)	species with an unpaired electron	1
8(a)(ii)	$NH_2 + Cl \rightarrow NH_2Cl$	1
8(b)(i)	$H \xrightarrow{\bullet} XX \xrightarrow{\bullet} XX \xrightarrow{\bullet} H$	1
8(b)(ii)	sp ³ AND 100–107°	1
8(c)(i)	(entropy) is a measure of the disorder/randomness of a system	1
8(c)(ii)	$\Delta S^{\circ} = 237 + 187 - (241 + 198) = -15.0 (J \text{ K}^{-1} \text{ mol}^{-1})$	1
8(c)(iii)	$\Delta H^{\rm e} = 95.4 - 92.3 - (80.1 - 45.9) = -31.1 (\text{kJ mol}^{-1})$	1
8(c)(iv)	$\Delta G^{e} = \Delta H^{e} - T\Delta S^{e} [1]$ $\Delta G^{e} = -31.1 - (298 \times -0.015) = -26.6 \text{ (kJ mol}^{-1}) [1]$	2
8(c)(v)	(at higher temperatures) $T\Delta S^{e}$ becomes more negative so ΔG^{e} becomes more positive OR (at high temperatures) $-T\Delta S^{e}$ is becomes more positive so ΔG^{e} becomes more positive	1
8(d)	ethylamine > ammonia > phenylamine [1] ethyl group is electron donating group [1] p-orbital from N in phenylamine overlaps with π-ring system OR lone pair on N is delocalised into benzene ring [1] basicity linked to ability of N to accept a proton [1]	4

	PMT
)18	

Question		Answer	Marks
9(a)	H₂N	$ \begin{array}{c} CO_{2}H \\ CH_{2} \\ CH_{2} \\ CH_{2} O CH_{2}SH \\ CH_{2} O CH_{2}SH \\ CH_{2} O CH_{2}SH \\ CH_{2} O CH_{2}SH \\ H H H H $	2
9(b)	spot	identity	3
	E	Glu	
	F	Glu-Cys	
	G	Cys	
	 M1 correct table [1] M2 Explanation of why Cys moves the least – becan M3 Explanation of why Glu-Cys moves a smaller distribution of the statement of		