

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/43 October/November 2017

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks
1(a)	N +2 to +3 (and oxidised)	1
	Br ₂ /Br 0 to -1 (and reduced)	1
1(b)	$ \begin{pmatrix} x & x \\ x & 0 \\ x & \bullet \end{pmatrix} \begin{pmatrix} x & \bullet \\ x & \bullet \end{pmatrix} \begin{pmatrix} x & x \\ \bullet x \end{pmatrix} \begin{pmatrix} x & x \\ \bullet x \end{pmatrix} Br \begin{pmatrix} x \\ x \end{pmatrix} K $	
	3 bonding pairs around N (in a structure involving NOBr)	1
	rest of molecule correct	1
1(c)(i)	the power to which a concentration of a reactant is raised in the rate equation	1
1(c)(ii)	using expt. 2 and 3 a = 2 or [NO] 2nd order and conc × 3 rate × 9 or $6.1 \times 10^{-2}/6.8 \times 10^{-3} = (0.09/0.03)^{a}$	1
	using expt. 1 and 2 b = 1 or $[Br_2] 1^{st}$ order and conc × 2 rate × 2 or $6.8 \times 10^{-3}/3.4 \times 10^{-3} = (0.04/0.02)^{b}$	1
(c)(iii)	initial rate = 0.16(32)	1
1(c)(iv)	$(0.0034 = k(0.03)^2(0.02))$ k = 188.9	1
	$mol^{-2} dm^6 s^{-1}$	1
1(c)(v)	k decreases (as rate decreases)	1

PMT

Question	Answer	Marks
1(d)	m = 2 and n = 0	1

Question	Answer	Marks
2(a)	it/solubility decreases down the group and K_{sp} decreases	1
2(b)(i)	$MgCO_3(s) \rightleftharpoons Mg^{2+}(aq) + CO_3^{2-}(aq)$	1
2(b)(ii)	(white) solid appears/precipitation (of MgCO ₃)	1
	as [CO ₃ ²⁻] increases shifting equilibrium to the LHS (precipitating out MgCO ₃)	1
2(c)	solubility = $\sqrt{1.0 \times 10^{-5}} = 3.16 \times 10^{-3} \text{ mol dm}^{-3}$	1
	solubility= $3.2 \times 10^{-3} \times 84.3 = 0.27 \text{ g dm}^{-3}$	1
2(d)(i)	Mg ²⁺ ion is smaller than Ba ²⁺ ion or ionic radii increase down group ora	1
	(Mg^{2+}) distorts/polarises/the anion/nitrate group/nitrate ion/NO ₃ ⁽¹⁾⁻ /NO ₃ ion more easily (than Ba ²⁺) ora	1
2(d)(ii)	$Ba(NO_3)_2 \to BaO + 2NO_2 + \frac{1}{2}O_2$	1
2(d)(iii)	$BaO + H_2O \rightarrow Ba(OH)_2$	1
	$Ba(OH)_2 + H_2SO_4 \to BaSO_4 + 2H_2O$	1

9701/43

Cambridge International AS/A Level – Mark Scheme PUBLISHED

October/November 2017

Question	Answer	Marks
3(a)	the potential difference between two half-cells/two electrodes (in a cell)	1
	under standard conditions of 1 atm., 298 K, (all) solutions being 1 mol dm^{-3}	1
3(b)(i)	$F_{2} + hydrogen$ correct delivery system for H ₂ Pb ²⁺ (aq) Pb electrode Pt electrode H'(aq) solution salt bridge voltmeter/V labelled	4
3(b)(ii)	more negative	1
	shifts Pb^{2+} (+ $2e^{-}$) \Rightarrow Pb equilibrium/reaction to the left	1

PMT

PMT

	FOBLISHED	2017
Question	Answer	Marks
3(c)(i)	Q = $0.4 \times 80 \times 60 = 1920$ C and use of 96500/193000 Moles of Pb = $1920/193000 = 9.95 \times 10^{-3}$ Mass of Pb = $207.2 \times 9.95 \times 10^{-3} = 2.1$ g	2
	OR $Q = 0.4 \times 80 \times 60 = 1920 \text{ C}$ and use of $1.6 \times 10^{-19}/1.2 \times 10^{22}$ atoms Pb = 6×10^{21} ; moles of Pb = $6 \times 10^{21}/6 \times 10^{23} = 0.01$ Mass of Pb = $207.2 \times 0.01 = 2.1 \text{ g}$	
3(c)(ii)	$PbO_{2}(s) + SO_{4}^{2-}(aq) + \mathbf{4H}^{+} + \mathbf{2e}^{-} \rightarrow PbSO_{4}(s) + \mathbf{2H}_{2}\mathbf{O}$	1
3(d)	reagents/PbO ₂ /H ₂ SO ₄ and used up/concentration decreases	1
	as fuel/hydrogen is being continuously supplied/fuel has not run out	1

Question	Answer	Marks
4(a)	density is higher and melting point is higher	1
	(density) due to A _r being larger and smaller atomic radii or (Co) atoms/ions heavier and smaller	1
	(melting point) due to stronger attraction to cations as more delocalised electrons	1
4(b)	(a molecule or ion) formed by a central metal atom/ion surrounded by (one or more) ligands	1
4(c)(i)	same number and type of atoms and different structural formula	1

9701/43

Cambridge International AS/A Level – Mark Scheme PUBLISHED

	PL	JBLISHED			2017
Question	Answer				
4(c)(ii)	octahedral AND 3D structure of $[Co(NH_3)_5Br]^{2+}$ e.g. $H_3N_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	NH ₃ NH ₃ NH ₃ NH ₃			1
4(c)(iii)	co-ordinate/dative covalent				1
4(c)(iv)	+3 for both				1
4(d)	(HNO ₃) Ag ⁺ /AgNO ₃ cream(–yellow) ppt. (of AgBr) and no reaction/white ppt. for other isomer				
	Ba(OH) ₂ /Ba ²⁺ (aq)/BaCl ₂ /Ba(NO ₃) ₂ white ppt. (of BaSO ₄) and no reaction for other isomer				
4(e)	(d-d) energy gap/ ΔE is different				
	absorb different wavelength/frequency (of light)				
4(f)		heterogeneous	homogeneous]	2
	Fe in the Haber process	~			
	Fe ²⁺ in the I [−] /S ₂ O ₈ ^{2−} reaction		~		
	NO_2 in the oxidation of SO_2		~	1	
	V ₂ O ₅ in the Contact process	~		1	

	FOBLISITED	2017
Question	Answer	Marks
5(a)	nitrile; alkene; chloro; benzene/arene	2
5(b)		1
	addition (polymerisation)	1

PMT

9701/43

Cambridge International AS/A Level – Mark Scheme PUBLISHED

		PUBLISHED		2017
Question	Answer			
5(c)	reagent	structure of product	type of organic reaction	8
	excess Br₂(aq)		(electrophilic) addition	
	excess hot, conc. MnO₄⁻(aq)	С ¹ но с о с с о ог с о ог с о ог с о он с о ог с о он с он	oxidation	
	excess hot, aqueous HC <i>l</i>		hydrolysis	
	excess H ₂ /Pt catalyst	both CH_2NH_2 formed [1] both arene and alkene reduced [1]	reduction/ hydrogenation	
		structures [6]	2 correct for 1 mark total [2]	

PMT

9701/43

Cambridge International AS/A Level – Mark Scheme PUBLISHED

	FODLISTILD	2017
Question	Answer	Marks
6(a)(i)	CH ₃ NO ₂	1
6(a)(ii)	$HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + 2HSO_4^-$	1
6(a)(iii)	 any three from: Point 1: bonds/electrons are partially delocalised in T or delocalised/π system/π bonding extends over only five carbons Point 2: four π-electrons in the (delocalised system of T) or methylbenzene has (two) more π-electrons/(two) more delocalised electrons Point 3: contains a carbon that is sp³ hybridised in T or (all the) carbons are sp² hybridised in methylbenzene Point 4: one carbon has a bond angle of 109.5°/tetrahedral (in T) or (C-C) bond strengths/lengths are not all the same 	3
6(b)(i)	or not all the bond angles are 120° (in T) 4-aminobenzoic acid	1
6(b)(ii)	step 1Sn + HC l [1] concentrated/reflux/heat [1]step 2CH_3COC l [1]step 3KMnO ₄ /manganate(<u>VII</u>)/MnO ₄ ⁻ (acidified/alkaline) and heat [1]step 4aqueous HC l and heat [1]step 5ethanol, H ₂ SO ₄ , concentrated/reflux/heat [1]	6

PMT

		PUBLISH	1ED		201	
Question		Answer				
6(c)	(benzocaine) is less (basi Ione pair (on N) is less a	c than ethylamine) AND vailable to accept a proton/H⁺			2	
	since (lone pair on N) is c or phenyl ring is electron					
	OR ethylamine is more basic Ione pair (on N) is more a	(than benzocaine) AND available to accept a proton/H ⁺				
	since ethyl/alkyl group is	electron-donating group				
6(d)(i)	7 peaks					
6(d)(ii)	CDC <i>l</i> ₃ will produce no signal in the spectrum or CHC <i>l</i> ₃ would produce a signal/would be detected					
6(d)(iii)	δ/ppm	group responsible for the peak	number of H atoms responsible for the peak	splitting pattern		
	1.2	CH ₍₃₎	3	triplet		
	3.5	CH ₍₂₎ O	2	quartet		
	5.5	NH ₂	2	singlet (broad)		
	7.1–7.4	H attached to aromatic/benzene ring	4	multiplet		
6(d)(iv)	neighbouring/adjacent carbon atom has two protons/H (attached to it) or there is an adjacent $CH_2(O)$ group					
6(d)(v)	peak at $5.5/NH_2$ peak will disappear and NH_2 /protons exchange/swap with deuterium					

	PUBLISHED	2017
Question	Answer	Marks
6(e)(i)	NaNO ₂ + HC <i>l</i> or HNO ₂	1
6(e)(ii)	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & $	
	structure of diazonium salt R	1
	structure of azo dye S	1

PMT

9701/43

Cambridge International AS/A Level – Mark Scheme PUBLISHED

	PUBLISHED	2017
Question	Answer	Marks
7(a)	Fe atom= $(1s^22s^22p^6)3s^23p^63d^64s^2$	1
	Fe^{3+} ion= $(1s^22s^22p^6)3s^23p^63d^5$	
7(b)	$([H^+]^2 = 8.9 \times 10^{-4} \times 0.25 \text{ or } 2.225 \times 10^{-4})$ $[H^+] = 0.0149$	1
	pH = -log(0.0149) = 1.83	1
7(c)(i)	$(K_{stab}$ is) the equilibrium constant for the formation of a complex (ion) (in a solvent from its constituent ions/molecules)	1
7(c)(ii)	$[Fe(H_2O)_5F]^{2+}$ and $[Hg(H_2O)_5Cl]^+$	1
7(d)	$K_{\text{stab}} = \frac{[\text{Fe}(\text{ed})_2 C l_2^{3-}]}{[\text{Fe}(\text{H}_2 \text{O})_4 C l_2^{+}][\text{ed}]^2}$	1
	mol ⁻² dm ⁶	1
7(e)(i)	$Cl_{III_{III_{III_{III_{III_{III_{III_{I$	3
	cis cis trans	

9701/43

Cambridge International AS/A Level – Mark Scheme PUBLISHED

T OBLIGHED		
Question	Answer	Marks
7(e)(ii)	any cis isomer and the trans isomer identified	1
7(e)(iii)	both correct cis isomers identified	1
7(e)(iv)	trans isomer identified	1