CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the October/November 2015 series

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Question	Marking point	Marks
1 (a)	$\begin{array}{ll} \text{Ca} & 3s^23p^64s^2 \text{ and} \\ \text{Ca}^{2^+} & 3s^23p^6 \end{array}$	1
(b)	$Ca(OH)_2 + 2HNO_3 \rightarrow Ca(NO_3)_2 + 2H_2O$	1
	or CaO + $2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O$	
(c) (i)	CaO and brown gas	1
(ii)	the (cat)ion size/radii increases	2
	decreasing its ability to polarise the nitrate ion/N-O bond	
(d) (i)	(energy change when) 1 mole of ions	2
	gaseous (ions) dissolve in water (to form an infinitely dilute solution) or gaseous (ions) form an aqueous solution	
(ii)	$\Delta H^{\rm e}_{\rm latt} {\rm Ca(NO_3)_2} + \Delta H^{\rm e}_{\rm sol} {\rm Ca(NO_3)_2} = \Delta H^{\rm e}_{\rm hyd} {\rm ~Ca^{2^+}} + 2\Delta H^{\rm e}_{\rm hyd} {\rm ~NO_3}^-$ $\Delta H^{\rm e}_{\rm latt} - 19 = -1650 + (2x - 314)$	3
	$-2259 \text{kJ} \text{mol}^{-1}$	
1	$Ca^{(2+)}$ is a smaller (ion) $\it or$ $Ca^{(2+)}$ has a larger charge density $Ca^{(2+)}$ has a stronger attraction/bond to H_2O	2
		<u>12</u>

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Question	N	Markin	g point						
2 (a)		Na	Mg	Αl	Si	Р	S	Cl	Ar
		1	0	1	2	3	2	1	0
(b) (i)				d/ppt or ite/steam		ite/steam oH 0–3	y fumes p	oH 0–3	
(ii)	5	SiCl ₄ +	2H ₂ O -	→ SiO ₂ +	+ 4HC <i>l</i>				

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Question	Marking point					Marks
3 (a)	forms (one or more) with incomple	ions ete d orbital(s))/sub-shells	/shells		1
(b) (i)	dative (covalent) or	co-ordinate				1
(ii)	species	can act as a	a ligand	cannot act as a ligand		2
	NO ₃	✓	-	<u> </u>		
	BF ₃			✓		
	H ₂ NCH ₂ CH ₂ NH ₂	✓	/			
	NH ₄ ⁺			✓		
(c) (i)				a of manganese	type of reaction	5
	Mn ²⁺ (aq) + NaOH	I (aq)	Mr	Mn(OH) ₂ n(H ₂ O) ₄ (OH) ₂	precipitation	
				Mn(OH) ₃		
	Mn ²⁺ (aq) + conce	ntrated HC1		MnC <i>l</i> ₄ ²⁻ MnC <i>l</i> ₆ ⁴⁻	ligand exchange/substitution	
	Mn ²⁺ (aq) + aqueo	ous H ₂ O ₂		Mn ³⁺	redox/oxidation	
						<u> </u>

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Que	estion	Marking point	Marks
4	(a)	M1: dipole on C–C1 bond	3
		M2: curly arrow breaking C–C1 bond	
		M3: curly arrow from the oxygen on ${}^{}$ OH (lone pair needs to be shown) to carbon in C–C l bond and C l (ion) formed in the mechanism	
		$\begin{array}{c} H_3C \\ H_3C \\ \hline \\ H_3C \\ \hline \end{array} \begin{array}{c} OH \\ \hline \end{array} \begin{array}{c} H_3C \\ \hline \\ H_3C \\ \hline \end{array} \begin{array}{c} OH \\ \end{array} \begin{array}{c} OH \\ \end{array} \begin{array}{c} OH \\ \end{array} \begin{array}{c} OH \\ \end{array} \begin{array}{c} OH \\ \end{array} \begin{array}{c} OH \\ \end{array} \end{array} \begin{array}{c} OH \\ \end{array} \begin{array}{c} OH \\ \end{array} \begin{array}{c} OH \\ \end{array} \begin{array}{c} OH \\ \end{array} \begin{array}$	
	(b) (i)	time taken for the concentration of a reactant(s) to fall to half its original value	1
	(ii)	evidence of a pair of construction lines on graph and $t_{1/2}$ = 49–53 s	1
	(iii)	no effect/change	1
	(c) (i)	evidence of tangent at 80 s and data used, e.g. 0.42/152 = 0.00263	2
		units mol $dm^{-3} s^{-1}$	
	(ii)	correct use of answer to (i)/0.19 and s ⁻¹	1
			9

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Question	Marking point	Marks
5 (a) (i)	M1: salt bridge and voltmeter/	4
	M2: method of H ₂ gas delivery	
	M3: X and Pt electrode labelled	
	M4: solution H ⁺ /HC <i>l</i> (aq)/H ₂ SO ₄ and X ²⁺ labelled	
(ii)	25°C/298K and 1 atm/101 kPa pressure and 1 mol dm ⁻³ (solution)	1
(iii)	solution – ions or H ⁺ and X ²⁺ and wires – electrons/e ⁻	1
(b) (i)	$X + 2Ag^+ \rightarrow 2Ag + X^{2+}$	1
(ii)	moles Ag = $1.30/107.9 = 0.0120$ 1 moles of X react with 2 moles Ag ⁺ moles of X lost = $0.012 \times 0.5 = 0.00602$ A_r of X = $0.67/0.006 = 111-112$ and X = Cd	4
		<u>11</u>

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Qu	estion	Marking point	Marks
6	(a)	$4BF_3 + 3NaBH_4 \rightarrow 2B_2H_6 + 3NaBF_4$	1
	(b)	δ ⁻ [1] dipoles (M1) δ ⁺ [1] intermediate (M3) [1] both curly arrows (M2) arrow must come from lone pair	3
	(c) (i)	(electrophilic) addition	1
	(ii)	H_3C CH_3 CH_3	1

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Question	Marking point	Marks
(d) (i)	any four of	3
	M1: σ-bonds between C–C or C–H	
	M2: π -bonds formed from overlap of p-orbitals	
	M3: (π-bonds/electrons) above and below the ring	
	M4:bonds/electrons are delocalised	
	M5: bond angle 120°	
	M6: intermediate C–C bond length/all C–C same length/strength	
	M7: carbons are sp ² hybridised	
(ii)	correct delocalised structure of borazine	1
	`N'	40
		<u>10</u>

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Question	Marking point	Marks
7 (a) (i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
(ii)	Sn + HC l HNO $_2$ or NaNO $_2$ + HC l step 1 (linked to a reduction) reflux/heat/>50 °C or conc/6M (HC l) and step 2 \leq 10 °C	3
(iii)	diazonium (group)	1
(b) (i)	σ -bonds = 14 π -bonds = 2	2

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Question	Marking poi	int	
7	reagent	structure of product	type of reaction
	HC1	H_3N^{+} CI^{-} O	acid-base or neutralisation
	CH₃CH₂Br	CH ₃ CH ₂ NH ₂ NH ₂ Br ⁻	(nucleophilic) substitution

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Question	Marking point	Marks
8 (a) (i)	A = mRNA B ₁ and B ₂ , etc. = tRNA or tRNA-amino acid complex	2
(ii)	stage 1 = transcription and stage 3= translation	1
(b) (i)	$C_5H_5N_5$	1
(ii)	cytosine, thymine, guanine	1
(iii)	covalent hydrogen bonding	2
(c)	hydrolysis	1
(d) (i)	Phosphorus/P	1
(ii)	H atoms have insufficient electron density <i>or</i> electrons (to show up) <i>or</i> H atoms contain one e	1
		<u>10</u>

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Qu	estion	Marking point	Marks
9	(a)	iron/Fe (= haemoglobin)	2
		sodium/Na or potassium/K (= transmission of nerve impulses)	
		Zn or Cu or Mg or Mn or Mo or Ni or Fe or Co (= enzyme co-factor)	
	(b)	any three of: M1: substrate binds to/fits into the active site of the enzyme	3
		M2: Interaction with site causes a specific bond to be weakened, (which breaks)	
		M3: lowers activation energy	
		M4: products released from the enzyme/active site	
	(c) (i)	Tertiary	1
	(ii)	$2 - SH \longrightarrow -S - S - (+ 2H)$	1
	(iii)	oxidation	1
	(d) (i)	E = CH and F = CH ₂	1
	(ii)	E = triplet and adjacent 2H F = doublet and adjacent 1H	2
			<u>11</u>
10	(a) (i)	CH_3 N	1

Page 13	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9701	42

Question	Marking point	Marks
(ii)	CH ₃ OH NH ₂ OH	2
(iii)	$HO \longrightarrow NH_2 \longrightarrow NH_2 \longrightarrow OH$ CH_3 -OH	3
(b)	M1: hydrogen bonding M2: between the NH ₂ groups and water or CO ₂ /C=O/-OH groups and water (allow names) or lone pair on N/O with water	2
(c)	allow range 1–200 nm or 1–200 × 10 ⁻⁹ m	1
		<u>9</u>