CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/43

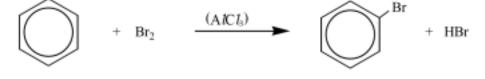
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.


Page	2	Mark Scheme	Syllabus	Paper					
	GCE A LEVEL – October/November 2013 9701								
(a)									
8 e a t	electror total of	nd to an oxygen using two N electrons as around N in 1 double + 2 single bonds 24 electrons, including one, and <i>only</i> one " " electron, " ", can be in a bond or a lone pair)							
(b) (i)	2Mg($NO_3)_2 \longrightarrow 2MgO + 4NO_2 + O_2$							
(ii)	 (ii) (down the group) nitrates become more stable <i>or</i> are more difficult to decompose <i>or</i> need a highe temperature to decompose 								
	beca	use there is less polarisation of the anion/nitrate ion/	N–O bonds						
	as radius of M ²⁺ /metal ion increases <i>or</i> charge density of the cation decreases								
				I					
(-) 0	ᆞᆠᄼᅛ	+ $2NO_3 \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$		species					

[2]

[Total: 9]

Page 3		3	Mark Scheme	Syllabus	Paper		
			GCE A LEVEL – October/November 2013	9701	43		
(a)	any	r two f	 molecules have negligible volume negligible intermolecular forces or particles are not attracted to each or to the walls of the container random motion no loss of kinetic energy during collisions or elastic collisions (NOT elastic molecules) 				
(b)	(i)	low t	emperature and high pressure	bo	oth required		
	(ii)	(at lo	w T) forces between particles are more important,		I		
		(at h	igh P) volume of molecules are significant		I		
					[3 max		

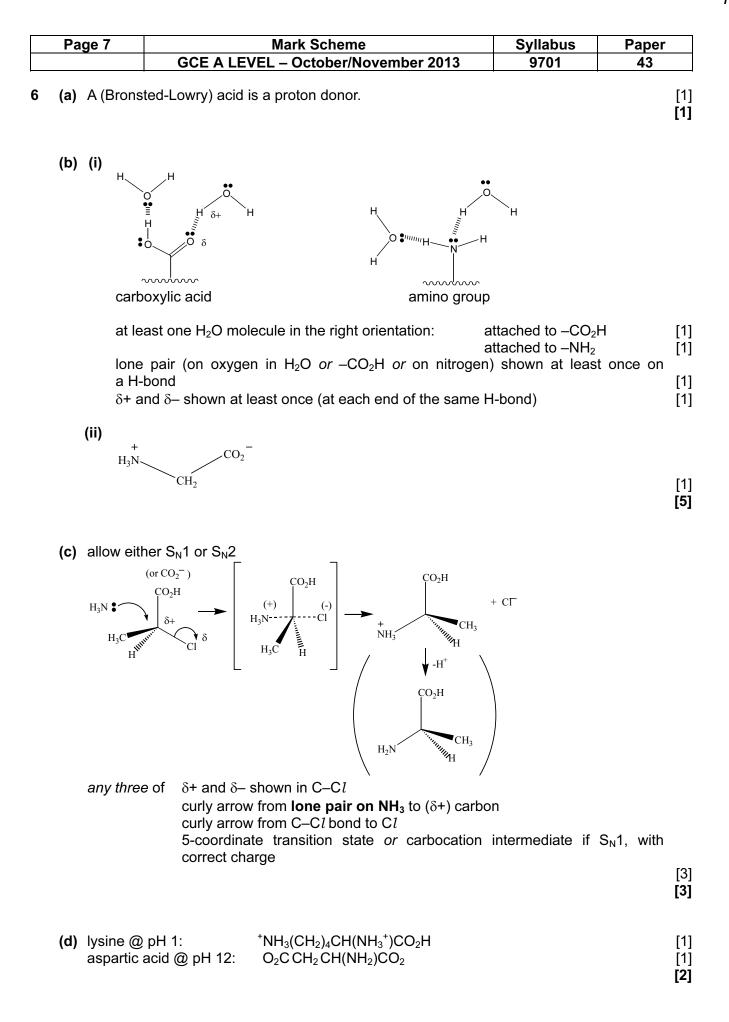
- (c) (i) endothermic; because the equilibrium moves to the right on heating *or* with increasing temperature *or* because bonds are broken during the reaction [1]
 - (ii) e.g. halogenation or Friedel-Crafts alkylation/acylation

reactants [1] products [1]

other possibilities: Cl_2 , I_2 , R-Cl, RCOCl etc.

[3]

[Total: 7]


	Pa	ge 4		Μ	ark Scheme		Syllabus	Paper
		90 .			- October/Novem	ber 2013	9701	43
3	(a)	(i)	CH₃I	$Br(g) \longrightarrow CH_3(g)$	+ Br(g)			[1]
		(ii)	or A	$lC l_3(g) \longrightarrow \frac{1}{3} A l(g)$ $lC l_3(g) \longrightarrow A lC l_2(g)$	(g) + Cl(g)			[2]
			(A <i>l</i> C	$l_3(g) \longrightarrow Al(g) +$	3C <i>l</i> (g) for (1) mar	k)		[3]
	(b)	(i)	due	d energies decrease fi to increasing bond ler h causes less effectiv	ngth <i>or</i> increase in			[1] [1] pair [1]
		(ii)	to its	er because fluorine is self) ecause the bond leng				
			F)	-				
			or re	pulsion between the r	nuclei (of F)			[1]
								[4 max 3]
	(c)	(i)		hlorine: = E(H – H) + E(C <i>l</i> – C	l) - 2E(H - Cl) = -	436 + 242 – (2 – 184 kJ mol ¹	× 431)	[2]
				odine: = E(H – H) + E(I – I) –	- 2E(H – I) = - = -	436 + 151 – (2 –11 kJ mol ¹	× 299)	[1]
		(ii)	•	rides become less the	-	• .		[1]
			สร แ	ne H–X bond energy c	iecieases (more li		-x bond energy	,
								[5]
	(d)	(i)		Na 15.2 / 23 ⇒ 0.661 0.661⇒ 1.0	O 31.8 / 16 1.99 2.0	Br 53.0 / 79.9 0.663 1.0)	[1]
			÷	0.001⇒ 1.0	3.0	1.0	thus NaE	BrO ₃ [1]
		(ii)		+ 6NaOH ——→Nal Br₂ + 6OH ——→Br0	-	l₂O		species [1] balancing [1] [4]
								[Total: 15]

[Total: 15]

	• •	Τ
Г	IVI	1

Pa	Page 5				Ν	Mark Schen	ne		Syllabus	Pap	er
				GCE A LE	VEL	- October/	November	2013	9701	43	3
(a)	(i)		oon lised.		has	delocalise	d electron	s whereas	s silicon's e	lectrons a	re [
	(ii)					e <i>or</i> delocal Int covalent		e electrons	whereas ger	rmanium ha	as [[[;]
(b)	(i)	2Pb	O ₂ –	\longrightarrow 2Pb	0 + 0	O ₂					[
	(ii)	PbO	₂ + 4	HC <i>l</i> ——	→ Pb	$Cl_2 + Cl_2 +$	2H ₂ O				[
	(iii)	SnO	+ 21	NaOH ——	\rightarrow N	Na₂SnO₂ + ⊦	I ₂ O				[
	(iv)	GeC	;14 + 2	2H ₂ O ——	\rightarrow G	GeO2 + 4HC	ļ				[[4
										[Total:	6]

Page 6	5		Mark Scheme)	Syllabus	Paper
		GCE A LEVEL	9701	43		
(a) (i)	Br ₂ (a elect	rophilic substitution	Den (+ 3 HBr		[1 [1
			Br	-		[1
(ii)		pecial conditions rophilic addition				[1 [1
	Br		1	ow bromohydrin or o Br ₂ (aq) has been used		
						product [1
(iii)	-	/UV <i>or</i> heat) radical substitutior	D			[1 [1
	Br		Br (+ HBr))		
		nced equation in (i) nced equation in (iii)				product [' [' ['
					[1	1 max 10]
(b) (i)			ОН	CH ₃ CO ₂ H		
	C		D	Ε		
	,	,	D	3 correct structur	es (can be in an	y order) 3 × [′
(ii)		with $I_2 + OH$: C with NaOH: C	C and D O only O and E Perent – must re	efer to the candidate	's formulae)	[, [,
						[6
						[Total: 16

PMT

Pa	ge 8		Mark Scheme Syllabu		Paper
			GCE A LEVEL – October/November 2013	9701	43
(e)	(i)	6 (si)	<)		[
	(ii)	eithe or	r H ₂ NCH(CH ₃)CO–NHCH(CH ₂ OH)CO ₂ H H ₂ NCH(CH ₂ OH)CO–NHCH(CH ₃)CO ₂ H		[
(f)	(i)		pounds have the same structural formula but different (spatial) arrangement/position <i>or</i> orientation	of atoms in space	[
	(ii)	J			[
((iii)				
			H CH ₃		
		H ₂ N HC			r
		IIC	- <u>1</u> -C] [
					[Total: 1

	Page 9		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	43
			Section B		
7	(a) (i)	(allo	als such as Hg, Ag, Cd, Pb, Cu (identified – NOT just " w names, atomic symbols or ions, names or formulae enicillin <i>or</i> organophosphorus insecticide etc.		(NO ₃) ₂) [1]
	(ii)	or to	ion/inhibitor binds to a part of the enzyme molecule an allosteric site changes the shape of the active site <i>or</i> denatures the	-	ctive site [1] [1]
			nhibitor forms a covalent/permanent bond with the a king entry of the substrate	ictive site	[1] [1]
	(iii)				
		rate rea	e of ction		
			[substrate]	Ē	
					[1] [4]
	(b) (i)	(DN/	$A) \longrightarrow mRNA \longrightarrow ribosome \longrightarrow tRNA$	→(Protein)	[2]
	(ii)	•	codon/it is used to stop the growth of a protein chain w: used at the start of protein synthesis)		[1] [3]
	(c) (i)	Ader	nosine diphosphate (ADP) <i>or</i> AMP and (inorganic) ph	osphate/P _i /PO ₄ ³ /I	H ₃ PO ₄ [1]
	(ii)		two of – muscle contraction transport of ions/molecules <i>or</i> active transport <i>or</i> exor synthesis of new compounds/proteins etc. movement of electric charge in nerve cells bioluminescence non-shivering thermogenesis	cytosis <i>or</i> Na/K p	
			DNA synthesis/reproduction		2 × [1] [3]
					[Total: 10]

Page 10					Mark Scher	ne		Syllabus	Paper
			GCE	A LEVE	L – October	November 20	13	9701	43
3	(a) NM	IR an	d radiowav	es (<i>or</i> Vł	HF/UHF or 4	0 – 800 MHz)			[1 [1
	(b) NM	or (s		oton pro	duces magn	etic moment/fi an applied mag			[1
	the	re is i	nsufficient	electron	density/clou	d around H atc	oms for X	<pre>K-ray crystallogr</pre>	aphy [1 [2
	(c) Sul	fur, b	ecause it h	as the hi	ghest electro	on density			[1 [1
	(d) (i)		$\frac{100}{1.1} \times n$ $\frac{100 \times 0.15}{4.5 \times 1.1}$	3.03	3		(0	calculation must	t be shown) [1
	(ii)	the -	-OH peak (broad si	nglet) at δ 4.	6			[1
	(iii)	3 (th	ree)						[1
	(iv)	whic	as peak at ? h is due to s can only b	$-CO_2H$	d by oxidisin	g a <i>primary</i> alc	cohol.)		[1 [1
		in a	•	alcoho			thyl) gro	oups will be in	[1 the same [1
			•	•	• •	P : the peaks a – group. (henc		nd 3.6 are tripl CH ₂ –CH ₃)	ets, [1 [1
	(v)	CH ₃	CH ₂ CO ₂ H (structur	re needed, n	ot name)			[1 [6
									[Total: 10

Page 11		1	Mark Scheme			Syllabus	Paper
			GCE A LEVEL -	- October/November 2	013	9701	43
(a) (i)		diamond and graphite					[
	(ii)	colo elect hard dens	trical conductivity Iness	graphite black good conductor soft/slippery less dense than diamond lower	non-c hard/	parent/colourless conductor non slippery dense than grap	
							2
(D)	orl	has 3	e each carbon is only b bonding locations rms only 3 <i>bonds</i>)	bonded to 3 others <i>or</i> is	unsaturat	ted/doubly-bond	·
(d)	or (N0	has 3	bonding locations	bonded to 3 others <i>or</i> is	unsaturat	ted/doubly-bond	ed/sp² [[[
	or (N0	has 3 OT for ₀ H ₆₀	bonding locations ms only 3 <i>bonds</i>)	bonded to 3 others <i>or</i> is present = 0.001 × 6.02 >			[
	or I (NC C ₆₀	has 3 OT for ₀ H ₆₀ Num	bonding locations ms only 3 <i>bonds</i>) ber of atoms carbon p		< 10 ²³ / 12	2 = 5.02 × 10 ¹⁹	[[[2
	or (NG C ₆₀	has 3 OT for ₉ H ₆₀ Num Num	bonding locations ms only 3 <i>bonds</i>) ber of atoms carbon p ber of hexagons pres	present = 0.001 × 6.02 >	< 10 ²³ / 12 .51 × 10 ^{1;}	2 = 5.02 × 10 ¹⁹	[[[2
	or (NG C ₆₀	has 3 DT for ₀ H ₆₀ Num Num Area	bonding locations ms only 3 <i>bonds</i>) ber of atoms carbon p ber of hexagons pres a of sheet = 690 × 2.5 ²	present = 0.001 × 6.02 > sent = 5.02 × 10 ¹⁹ / 2 = 2	< 10 ²³ / 12 .51 × 10 ^{1:} m ²	2 = 5.02 × 10¹⁹	[[[[
	or (NC C ₆₀ (i) (ii)	has 3 OT for ₀ H ₆₀ Num Num Area Grap Buck it col	bonding locations ms only 3 <i>bonds</i>) ber of atoms carbon p ber of hexagons pres a of sheet = 690 × 2.5 ⁻ ohene: Yes, since it ha kminsterfullerene: No, nsists of separate/sin	present = 0.001 × 6.02 × sent = 5.02 × 10 ¹⁹ / 2 = 2 1 × 10 ¹⁹ = 1.73 × 10²² n	< 10 ²³ / 12 .51 × 10 ¹ m ² bile electr calisation /spheres	2 = 5.02 × 10¹⁹ ⁹ rons within each sphe	[[[[[[
	or (NC C ₆₀ (i) (ii)	has 3 DT for hH ₆₀ Num Area Grap Buck it con (so r	bonding locations ms only 3 <i>bonds</i>) aber of atoms carbon p aber of hexagons pres a of sheet = 690 × 2.5 ² ohene: Yes, since it ha kminsterfullerene: No, nsists of separate/sim no delocalisation from	present = 0.001 × 6.02 × sent = 5.02 × $10^{19}/2 = 2$ 1 × $10^{19} = 1.73 × 10^{22}$ n as free/delocalised/mol , (although there is deloc nple/discrete molecules	< 10 ²³ / 12 .51 × 10 ¹¹ m ² bile electr calisation / spheres	2 = 5.02 × 10¹⁹ 9 rons within each sphe	[[[[[[