MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

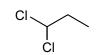
9701 CHEMISTRY

9701/41

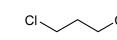
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.


• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.


_		_
)	Т
Г	IVI	

Page 2		2	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A LEVEL – October/November 20	011 9701	41
1	(a) (i)	eithe	er burn <i>or</i> shine light/uv on mixture of $H_2 + Cl_2$	<i>but</i> NOT heat	[1]
	(ii)		orange/brown colour of bromine decolourises/	disappears	
			my/misty/white fumes produced ainer gets warm/hot		[2]
	(iii)	H-H	= 436 C <i>l</i> -C <i>l</i> = 244	H-Cl = 431	
		ΔH	= 436 + 244 - 2(431) = -182 kJ	mol ¹	[2]
		H-H	= 436 Br-Br = 193	H-Br = 366	
		ΔH	= 436 + 193 - 2(366) = -103 kJ	mol ¹	[2]
	(iv)	H-Br	r bond is weaker than the H-C <i>l</i> bond – allow c	onverse.	[1]
					[8]
	(b) (i)	light			[1]
	(ii)		ds broken = C-H & I-I = 410 + 151 = 56		
		bond	ds made = C-I & H-I = $240 + 299 = 53$ ΔH = $551 - 539 = +2$		[2]
	(iii)		overall reaction is endothermic or no stro	ng bonds/only weak bo	
		IOIIII	ied <i>or</i> high E _{act}		[1] [4]
	(a) (i)	hom	abutic ficcion is the breaking of a hand to for	m (two) radiaala/poutral	anagiag/
	(c) (i)		olytic fission is the breaking of a bond to for electron species		[1]
	(ii)	•CH	-		[1]
		the (C-Br bond is the weakest or needs least energ	gy to break/breaks most e	asily [1] [3]

(d)

- 4 structures: [2] 2 or 3 structures: [1]
 - [1] **[3]**

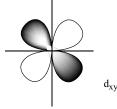
[Total: 18]

Correct chiral atom identified

© University of Cambridge International Examinations 2011

PMT	_		
	D	NЛ	Т
		IVI	

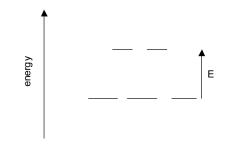
	Page 3	5	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A LEVEL – October/November 2011	9701	41
2	(a) (i)	Orde	er w.r.t. [CH₃CHO] = 1 er w.r.t. [CH₃OH] = 1 er w.r.t. [H ⁺] = 1		[1] [1] [1]
	(ii)	rate	= k[CH₃CHO][CH₃OH][H⁺]		[1]
	(iii)	units	$s = mol^{2} dm^{6} s^{1}$		[1]
	(iv)	rate	will be $2 \times 4 = 8$ times as fast as reaction 1 (relative ra	ate = 8)	[1] [6]


(b)

	[CH ₃ CHO] /mol dm ³	[CH ₃ OH] /mol dm ³	[H⁺] /mol dm ³	[acetal A] /mol dm ³	[H ₂ O] /mol dm ³
at start	0.20	0.10	0.05	0.00	0.00
at equilibrium	(0.20 – x)	(0.10 – 2x)	0.05	x	x
at equilibrium	0.175	0.05	0.05	0.025	0.025

(iv)	$K_c = 0.025^2/(0.175 \times 0.05^2) = 1.4(3) \text{ (mol}^{-1} \text{ dm}^3)$	[1] [max 9]
(iii)	$K_c = \{[acetal \mathbf{A}][H_2O]\}/\{[CH_3CHO][CH_3OH]^2\}$ units = mol ¹ dm ³	[1] [1]
(ii)	4 values in third row	4 x [1]
(i)	3 values in second row	3 x [1]

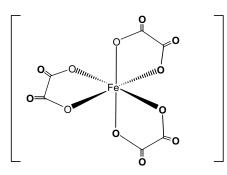
[Total: 15]


3 (a) for example.... also allow d_{z2}

shape (4 lobes) [1] correct label e.g. d_{xy} [1]

[2]

(b) (i)


Marks are for 5 degenerate orbitals [1] and 3:2 split [1]

(ii) colour due to the absorption of light NOT emitted light[1] $E = hf or photon's energy = E in above diagram[1]electron promoted from lower to higher orbital[1]size of <math>\Delta E$ depends on the ligand[1]as ΔE changes, so does f in E = hf[1][7]

(c) (i)
$$O.N.(carbon) = +3$$
 (4 × (-2) + 2x = -2, thus 2x = +6) [1]

3

(iii)

- [2]
- (iv) $\underline{2} K_3 Fe(C_2O_4)_3 \rightarrow \underline{3} K_2C_2O_4 + \underline{2} FeC_2O_4 + \underline{2} CO_2$ $Or K_3 Fe(C_2O_4)_3 \rightarrow \underline{3/2} K_2C_2O_4 + FeC_2O_4 + CO_2$ [2]

[max 5]

[Total: 14]

Page \$	5	Mark	Scheme: Teacher	rs' version	Syllabus	Paper			
		GCE A LI	EVEL – October/N	ovember 2011	9701	41			
(a) (i)		$C_2H_5NH_2 + HA \rightarrow C_2H_5NH_3^+ + A$ (HA can be H_2O , HC <i>l</i> etc.) Allow \rightleftharpoons instead of arrow							
(ii)									
	r	nost basic		least basic					
	e	thylamine	ammonia	phenylamine					
						[1]			
(iii)	ethy	lamine > NH₃ d	lue to electron-don	ating ethyl/alkyl grou	р	[1]			
	pher	phenylamine < NH_3 due to delocalisation of lone pair over ring							
(b) (i)	C ₆ H	$_{5}$ OH + OH \rightarrow	$C_6H_5O + H_2O$ (or	with Na ⁺ /H₂O/A)		[1]			
(ii)	рКа	of nitrophenol	is smaller/K _a is la	rger because it's a s	stronger acid/dis	sociates			
	more	e than phenol		s spread out moreov	-	[1]			
		ectron-withdraw	-	s spread out moreov		[1] p 0/ NO ₂			
(iii)	рКа	= 1.0				[1]			
(iv)	Nitro	group increas	es acidity / electror	n-withdrawing groups	s increase acidity	ر [1]			
						[5]			

(c) (i) **B** is phenyldiazonium cation, $C_6H_5-N^+\equiv N$

(ii)

reaction	reagent(s)	conditions	
Step 1	NaNO ₂ + HC <i>1</i> or HNO ₂ [1]	T < 10°C [1]	
Step 2	H₂O / aq	heat/boil/T > 10° (both) [1]	
Step 3	HNO₃ NB HNO₃(aq) OK for both	dilute (both) [1]	

[4] **[5]**

[Total: 14]

PMT

[1]

[1] [1]

[1] [3]

[Total: 9]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	41
(a) (i) C=0	c double bonds / alkenes		
(ii) –Oł	l groups / accept alcohols or acids		
(iii) CH _a	CO– or CH ₃ CH(OH)– groups		
(iv) cart	oonyl, >C=O, groups / accept aldehydes <u>and</u> ketones		4 × [1 [4
(b)	CO ₂ H		2 × [1
(c) isomers	of C		-

trans

type of isomerism is cis-trans or geometrical isomerism

correct structure (excl. stereochemistry)

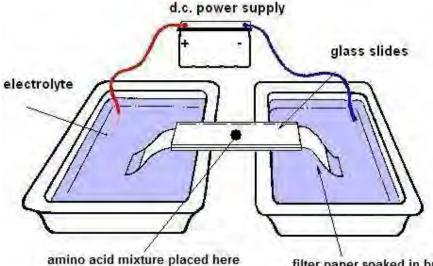
cis and trans drawn correctly

cis

Page 7	7	Mark Scheme: T	eachers' version	Syllabus	Paper
		GCE A LEVEL – Oct	ober/November 2011	9701	41
(a) (i)	2H ₂	$NCH_2CO_2H \rightarrow H_2NCH_2CO$	$NHCH_2CO_2H + H_2O$		[
(ii)	Ske	letal formula required			[[
(b) (i)	α he β ple	lix eated sheet			[
(ii)	For Nee with	dents should choose one α helix: d to show a helix C=O H-N veen turns	of the structures below For β pleated shee Need to show two strands with C=O them	parallel 'zig-zag'	
	Whi	chever is chosen, overall s	tructure [1] position of H bo	nds [1]	

[4]

(c)


чJ.			
	amino acid residue 1	amino acid residue 2	type of bonding
	-HNCH(CH ₂ CH ₂ CH ₂ CH ₂ NH ₂)CO-	HNCH(CH ₂ CH ₂ CO ₂ H)CO–	lonic bonds or hydrogen bonds
	-HNCH(CH ₃)CO-	-HNCH(CH ₃)CO-	van der Waals'
	-HNCH(CH ₂ SH)CO-	–HNCH(CH₂SH)CO–	Disulfide bonds
	-HNCH(CH ₂ OH)CO-	-HNCH(CH ₂ CO ₂ H)CO-	Hydrogen bonds

[4]

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	41

7 (a) Sketch and label the apparatus used to carry out electrophoresis e.g

mino acid mixture placed here filter paper soaked in buffer solution

- Marks: power supply / electrolyte + filter paper / buffer / acid mixture central 4 × [1]
 [4]
- (b) (i) pH of the buffer [1] [1] Charge on the amino acid species (ii) Size of the amino acid species / M_r [1] Voltage applied [1] Magnitude of the charge (on the amino acid species) [1] Temperature [1] (max 3) [max 3] (c) (i) They have insufficient electron density / only one electron [1] (ii) Sulfur [1]
 - because it has the greatest atomic number / number of electrons [1] [3]

[Total: 10]

Page 9 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	41

8 (a)

traditional material	modern polymer used
Paper/cardboard/wood/leaves hessian/hemp/jute steel/aluminium	PVC in packaging
Cotton/wool/linen	Terylene in fabrics
Glass/china/porcelain/earthenware metal/leather	Polycarbonate bottle

 $3 \rightarrow 2$ marks, $2 \rightarrow 1$ mark [2]

(b)	Rea	asons: Plastics/polymers pollute the environment for a long time do not decor biodegrade quickly They are mainly produced from oil Produce toxic gases on burning	mpose/ [1] [1] [1] max two
		ategy 1: Recycle polymer waste / use renewable resources ategy 2: Develop biodegradable polymers	[1] [1] [max 3]
(c)	or nyle	C mbustion would produce HC <i>l</i> / dioxins as a pollutant on/acrylic mbustion would produce HCN	[1] [1] [1] [2]
(d)	(i)	Polythene (or other addition polymer)	[1]
	(ii)	Addition polymerisation	[1]
		The polymer chains don't have strong bonds between them – easy to melt Could be answered with a suitable diagram	[1] [3]
			[Total: 10]