

Cambridge International AS & A Level

CHEMISTRY

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100 9701/43 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PMT

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

May/June 2022

PMT

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- 3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- 4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 <u>'List rule' guidance</u>

For questions that require *n* responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards *n*.
- Incorrect responses should not be awarded credit but will still count towards *n*.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science.

6 <u>Calculation specific guidance</u>

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 <u>Guidance for chemical equations</u>

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

9701/43

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2022

Question	Answer	Marks
1(a)	M1 ΔH_{hatt} and ΔH_{hyd} decrease / both become less exothermic / less negative	3
	M2 ΔH_{latt} decreases / changes less/becomes less exothermic by a smaller extent OR ΔH_{hyd} decreases / changes more / dominant factor	
	M3 ΔH_{sol} becomes less exothermic / less negative OR ΔH_{sol} becomes (more) endothermic / (more) positive OR $\Delta H_{sol} = \Delta H_{hyd} - \Delta H_{latt}$ expression AND reaction becomes less exothermic	
1(b)	Mg: fizzing Ba: (fizzing and) white solid/ppt forms	1
1(c)	M1 solubility of BaSO ₄ = $\sqrt{1.08 \times 10^{-10}} = 1.04 \times 10^{-5}$ (mol dm ⁻³)	2
	$M2 = 1.04 \times 10^{-5} \times 233.4 / 10 = 2.43 \times 10^{-4}$ (g per 100 cm ³ of solution) min 2sf	
1(d)(i)	$-1473 = 180 + 503 + 965 + \Delta H^{\rm e}_{\rm f} - 2469$	3
	ΔH^{e}_{f} of SO ₄ ^{2–} (g) = -652 kJ mol ⁻¹	
	M1 correct five values used [1] M2 only correct five values used [1] M3 correct signs and evaluation [1]	
1(d)(ii)	 BaSO₄ is more negative/bigger as Ba²⁺ is smaller OR Ba²⁺ has a larger charge stronger force of attraction between the ions 	2
	One mark for two correct Two marks for all three correct	

May/June 2022

9701/43

Question	Answer	Marks
1(e)(i)	M1 $\Delta G^{\circ} = 0$ so T = $\Delta H_{r}^{\circ} / \Delta S^{\circ}$	2
	M2 T = 132 / 0.616 = 214.3 K T = -58.7 °C min 2sf	
1(e)(ii)	M1 $\Delta S^{\circ} = (203 + (70 \times 8) + (2 \times 192)) - (427 - (2 \times 95)) = +530 \text{ J K}^{-1} \text{ mol}^{-1}$	3
	$\mathbf{M2} \ \Delta G^{\mathrm{o}} = \Delta H^{\mathrm{o}} - T \Delta S^{\mathrm{o}}$	
	M3 $\Delta G^{9} = 133 - (298 \times 0.530) = -24.9 \text{ kJ mol}^{-1} \text{ ecf 1dp min}$	

Question	Answer	Marks
2(a)	forms one or more stable ions / compounds / oxidation states with incomplete / partially filled (3)d-orbital(s) / d-shell / d-subshell	1
2(b)	OR OR	1
2(c)(i)	the catalyst and the reactants are in a different state / phase	1
2(c)(ii)	M1 adsorption of reactants to the surface of the catalyst M2 bonds in the reactants weaken (lowering the activation energy) M3 reaction occurs and the products are desorbed	3

9701/43

Cambridge International AS & A Level – Mark Scheme PUBLISHED

PMT May/June 2022

Question	Answer	Marks
2(d)	M1 reaction 1: $2KMnO_4 + H_2SO_4 \rightarrow Mn_2O_7 + H_2O + K_2SO_4$ OR $2KMnO_4 + 2H_2SO_4 \rightarrow Mn_2O_7 + H_2O + 2KHSO_4$	2
	M2 reaction 2: $Mn_2O_7 \rightarrow 2MnO_2 + 1.5O_2$	
2(e)(i)	M1 $[Mn(H_2O)_6]^{2+} + 2OH^- \rightarrow Mn(OH)_2 + 6H_2O$ M2 precipitation / acid-base / deprotonation	2
2(e)(ii)	M1 $[Mn(H_2O)_6]^{2+} + 4Cl \rightarrow [MnCl_4]^{2-} + 6H_2O$ M2 ligand exchange / substitution / replacement / displacement	2
2(e)(iii)	MnO ₂ AND redox	1

Question	Answer	Marks
3(a)(i)	evidence of tangent drawn at t = 40 s and calculation of gradient = $0.000170 \text{ (mol dm}^{-3} \text{ s}^{-1}\text{) min 2sf}$	1
3(a)(ii)	M1 evidence of construction lines and calculation of two $t_{1/2}$ OR evidence of construction lines and times for halving of concentration M2 deduction: constant half-life / constant time between halving of concentration \rightarrow 1st order	2
3(b)	M1 two half-lives in 320 s so $t_{1/2}$ = 160 s M2 $k = 0.693 / 160 = 0.00433 \text{ s}^{-1}$ ecf min 2sf	2
3(c)(i)	voltage / EMF / potential difference when a half-cell is connected to a (standard) hydrogen electrode under standard conditions	1
3(c)(ii)	ions move (from the salt bridge) to maintain charge balance / complete the circuit	1

May/June 2022

9701/43

Question	Answer	Marks
3(c)(iii)	H ₂ (g) salt bridge Pt(s) R ⁺ (aq) 298K, 1 atm, 1 mol dm ⁻³ Pt, H ₂ (g), good delivery system, 298 K, 1 atm Pt, Cr ₂ O ₇ ²⁻ (aq), H ⁺ (aq) / Cr ³⁺ (aq), 1 mol dm ⁻³ seen once, voltmeter three for one mark, six for two marks, nine for three marks	3
3(c)(iv)	SHE labelled negative AND arrow in the external circuit moving away from this electrode	1
3(d)(i)	M1 Cr ₂ O ₇ ²⁻ + 3CH ₃ CHO + 8H ⁺ \rightleftharpoons 2Cr ³⁺ + 3CH ₃ COOH + 4H ₂ O ALLOW Cr ₂ O ₇ ²⁻ + 3CH ₃ CHO + 5H ⁺ \rightleftharpoons 2Cr ³⁺ + 3CH ₃ COO ⁻ + 4H ₂ O M1 E _{cell⁹} = +2.27 (V)	2
3(d)(ii)	M1 $\Delta G^{\circ} = -nFE_{cell}^{\circ}$ M2 $\Delta G^{\circ} = -4 \times 96500 \times 2.01 = -775860 \text{ J mol}^{-1}$ $\Delta G^{\circ} = -776 \text{ kJ mol}^{-1} \text{ min 3sf}$	2

PMT

May/June 2022

Question	Answer	Marks
4(a)	 five 3d orbitals in the isolated Fe²⁺ ion of same energy splitting two higher and three lower d orbitals energy of non-degenerate d orbitals in the complex more than degenerate d orbitals in isolated ion two for one mark, three for two marks 	2
4(b)(i)	M1 (a species) that donates / uses two lone pairs	2
	M2 to form dative / coordinate bonds to a metal atom / metal ion / TM / TE / metal	
4(b)(ii)	M1 one correct 3D diagram with three bipy ligands M2 both diagrams correct M3 optical isomerism	3
4(c)	$[Fe(CN)_6]^{3-}$ AND equilibrium lies most to the left / lowest E^{-9} value	1
4(d)	M1 N sp ² AND C sp ² M2 σ bonds are formed by end-on-end overlap orbitals between C-H/C-C/C-N M3 π bonds are formed by sideways overlap of p orbitals between C-N/C-C	3

May/June 2022

PMT

	I OBLIGHED						
Question	Answer						
4(e)	pyridine $\downarrow \downarrow $	3					


Question	Answer						Marks	
5(a)	M1 benzoic acid > phenol > phe	enylmethanol					3	
	OR due to delocalisation of minin phenol lone pair on oxyg	 Any two of: in benzoic acid negative inductive effect of C=O AND O-H bond is weakened due to delocalisation of minus charge by C=O / 2O carboxylate ion is stabilised in phenol lone pair on oxygen is delocalised into the ring AND O-H bond is weakened in phenyl methanol positive inductive effect of CH₂ group AND O-H bond is strengthened 						
5(b)			benzoic acid	phenylmethanol	phenol]	3	
	N	la(s)	\checkmark	✓	\checkmark			
	N	laOH(aq)	✓	×	\checkmark	-		
						7		

9701/43

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2022

Question	Answer	Marks
5(c)(i)	POC1 ₃ and HC1 AND SO ₂ and HC1	1
5(c)(ii)	all the by-products / SO ₂ and HC l are gaseous OR no liquid by-products formed	1
5(d)(i)	$\begin{array}{c} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\$	4
5(d)(ii)	addition-elimination	1

PMT

Question	Answer	Marks
5(e)(i)	$OR \qquad OI \qquad $	2
5(e)(ii)	hydrolysis OR heating in dilute acid / alkali	1

Question	Answer					Marks	
6(a)	a mixture containing equal amounts of each optical isomer						
6(b)			carbon-13 NMR	proton NMR]	1	
		number of peaks in CDC l ₃	4	5			
6(c)(i)	OR	he pH at which an amino acid exists as a zwitterion DR he pH at which an amino acid has no overall charge					

May/June 2022

9701/43

PUBLISHED								
Question			Answer		Marks			
6(c)(ii)	$H_2N \underbrace{CH_2}_{O} \underbrace{CH_2}_{H} OH$				1			
6(d)	$H_2N \xrightarrow{C} CH_2 \xrightarrow{O} H_2N \xrightarrow{O} CH_2 \xrightarrow{O} CH_2$		S		2			
6(e)		spot	identity		3			
	-	-		_				
	-	E	Asn	_				
	-	F	Lys-Asn	_				
		G	Lys					
	 M1 table correctly completed M2 Lys and Lys-Asn are positively charged OR Asn is (nearly) uncharged M3 Lys-Asn has the highest M_r 							
6(f)(i)	aluminum oxide / silica (on solid support) AND inert gas / named inert gas e.g. N_2			1				
6(f)(ii)	S AND $R_{\rm f}$ is the same as the unknown amino acid in both solvents				1			

May/June 2022

9701/43

Question	Answer	Marks		
6(g)	mass of L = $58/44 \times 5.52 \times 10^{-2} = 7.28 \times 10^{-2} \text{ g}$			
	conc. of L = $7.28 \times 10^{-2} / 116 = 6.27 \times 10^{-4}$ (mol dm ⁻³) min 2sf			

Question	Answer	Marks
7(a)(i)	phenylamine AND amine AND ester	1
7(a)(ii)	sp carbons = 0, sp ² carbons = 7, sp ³ carbons = 6	1
7(b)	6	1
7(c)	lone pair on the N can accept a proton	1
7(d)(i)	CH ₃ NO ₂	1
7(d)(ii)	 step 1 M1 concentrated HNO₃ and H₂SO₄ step 2 M2 hot (alkaline) KMnO₄ (followed by addition of H⁺) 	2
7(e)	step 4 M1 HOCH2CH2N(CH2CH3)2 step 5 M2 Sn AND HC1 M3 concentrated (HC1) AND heat / reflux	3
7(f)(i)	M1 ratio of the concentration of a solute in two solvents M2 at equilibrium	2

May/June 2022

9701/43

Question	Answer	Marks				
7(f)(ii)	M1 $K_{pc} = [procaine]_{oct} / [procaine]_{water}$ 1.77 = (x/50)/(0.5 - x/75) M2 1.77 = 1.5x / 0.5 - x 0.885 - 1.77x = 1.5x x = 0.271 g min 2sf	2				