

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/43

Paper 4 A Level Structured Questions

May/June 2017

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE®, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
1(a)	solubility increases down the group	1
	ΔH_{latt} and ΔH_{hyd} both decrease or ΔH_{latt} and ΔH_{hyd} both become less exothermic/more endothermic	1
	ΔH_{latt} decreases / changes more (than ΔH_{hyd} as OH ⁻ being smaller than M ²⁺)	1
	$\Delta H_{\rm sol}$ becomes more exothermic/more negative/less endothermic/less positive	1
1(b)(i)	$\Delta H_{r1} - (538 + 2x230 + 394) = -(1216 + 286)$	1
	$\Delta H_{\rm r1} - 1392 = -1502$	
	$\Delta H_{\rm r1} = -110$	1
1(b)(ii)	$let \Delta H_f(HCO_3^-(aq)) = y$	1
	2y - 538 = -1216 - 394 - 286 - 26	
	y = -692	1
1(b)(iii)	$\Delta H_{r3} - 538 - 2(230 + 394) = -538 - 2(692)$	1
	$\Delta H_{\rm r3} = -136$	
1(b)(iv)	ΔH_{r3} will be identical to ΔH_{r4} , / unchanged	1
	as the reaction is the same, or:	1
	$2OH^{-}(aq) + 2CO_{2}(g) \longrightarrow 2HCO_{3}^{-}(aq) \text{ or}$	
	metal ions stay in solution/metal ions are unchanged / are spectators	

© UCLES 2017 Page 2 of 12

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
1(c)	more gaseous moles are being consumed (in reaction 3) or more CO ₂ moles are being consumed (in reaction 3)	1
	ΔS is therefore expected to be more negative/less positive for reaction 3.	1
	Total:	13

Question	Answer	Marks
2(a)(i)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1+1
	16 electrons on each diagram	1
2(a)(ii)	HNC = 115–125° AND NCO = 180°	1
2(a)(iii)	cyanic acid, because it's a stronger / higher bond enthalpy / triple / C≡N / more electrons involved bond	1
2(b)(i)	(i) $[H^+] = \sqrt{([HNCO]K_a)} = \sqrt{(0.1 \times 1.2 \times 10^{-4})} \text{ or } 3.46 \times 10^{-3}$	
	$pH = log [H^+] = 2.5 (2.46)$	1
2(b)(ii)	$Na_2CO_3 + 2(NH_2)_2CO \longrightarrow 2NaNCO + CO_2 + 2NH_3 + H_2O$	1
2(c)(i)	$(n(OH^{-}) \text{ at start} = (2 \times 0.1 \times 30) / 1000 = 6 \times 10^{-3} \text{ mol})$ $(n(OH^{-}) \text{ reacted} = (0.1 \times 20) / 1000 = 2 \times 10^{-3} \text{ mol})$ $n(OH^{-}) \text{ remaining} = (6-2) \times 10^{-3} = 4 \times 10^{-3} \text{ mol}, (in 50 \text{ cm}^{3})$	1
	so $[OH^-]_{end} = (4 \times 10^{-3} \times 1000) / 50 = 0.08 \text{ mol dm}^{-3}$	1

© UCLES 2017 Page 3 of 12

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
2(c)(ii)	$[H^+] = K_w / [OH^-] = (1 \times 10^{-14}) / 0.08 = 1.25 \times 10^{-13} \text{ mol dm}^{-3}$	1
	so pH = $-\log(1.25 \times 10^{-13}) = 12.9$	1
2(c)(iii)	curve starts at 2.46 / 2.5	1
	vertical portion (end point) at vol added = 10.0 cm ³	1
	finishes at pH = 12.9	1
2(d)(i)	monodentate: (a species that) forms one dative / coordinate bond	1
	ligand: a species that uses a lone pair of electrons to form a dative / coordinate bond to a metal atom / metal ion	1
2(d)(ii)	[Ag(NCO) ₂] ⁻ or [Ag(OCN) ₂] ⁻ correct formula	1
	correct charge	1
2(e)(i)	$n(BaCO_3) = 1.66 / 197.3 = 8.4(1) \times 10^{-3} \text{ mol}$	1
2(e)(ii)	$n(RNCO) = 8.41 \times 10^{-3} \text{ mol, so } M_r = 1/(8.41 \times 10^{-3}) = 119$	1
2(e)(iii)	molecular formula = C ₇ H ₅ NO	1

© UCLES 2017 Page 4 of 12

Question	Answer	Marks
2(e)(iv)	NH ₂	1
	Total:	23

Question	Answer	Marks
3(a)(i)	+3 or Co ³⁺	1
3(a)(ii)	oxidation	1
	ligand displacement / replacement / exchange / substitution	1

© UCLES 2017 Page 5 of 12

May/June 2017

Question	Answer					
3(a)(iii)	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	1+1				
	cis trans					
	geometrical or cis-trans	1				
3(b)(i)	The number of bonds / atoms bonded to an atom / ion / species / metal					
3(b)(ii)	C 6 [Cr(CN) ₆] –	6				
	D – $[Ni(NH_2CH_2CH_2NH_2)_3]$ 2+/+2					
	E 4 [PtC <i>L</i> ₄] –					
	F 3 - 3-/-3					
3(c)(i)	$K_{\text{stab(1)}} = [\text{FeSCN}^{2+}]/([\text{Fe}^{3+}][\text{SCN}^{-}])$ mol ⁻¹ dm ³	3				
	$K_{\text{stab(2)}} = [\text{FeC} l_4^-]/([\text{Fe}^{3+}][\text{C} l^-]^4)$ mol ⁻⁴ dm ¹²					
3(c)(ii)	$K_{eq(3)} = K_{stab(1)} / K_{stab(2)}$	1				
3(c)(iii)	$K_{eq(3)} = 1750$	1				
	mol ³ dm ⁻⁹	1				
	Tot	al: 19				

© UCLES 2017 Page 6 of 12

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
4(a)(i)	optical, because it contains a / one chiral C-atom or chiral C-atoms or chiral atom / centre or C* indicated or C with 4 different groups	1
4(a)(ii)	$C_{10}H_{14}O + 3H_2 \longrightarrow C_{10}H_{20}O$ correct formulae	1
	balancing	1
4(b)(i)	electrophilic substitution	1
4(b)(ii)	step 3 reduction	1
	step 5 substitution / hydrolysis	1
4(b)(iii)	step 1 $(CH_3)_2CHCl + AlCl_3/AlBr_3/FeCl_3/FeBr_3$	1+1
	step 2 HNO ₃ + H ₂ SO ₄ conc (T < 55 °C)	1
	step 3 Sn + HC1	1
	step 4 HNO_2 (or $NaNO_2 + HCl$) (at T < 10 °C)	1
	the two temperatures for steps 2 and 4	1
4(c)(i)	H ₂ + Pt or H ₂ + Ni + heat or pressure	1

Question	Answer	Marks
4(c)(ii)	HHILL CH ₃ CH(CH ₃) ₂ (CH ₃) ₂ CH, CH ₃ and OH on the correct ring atoms i.e. structure is correct	1
	all Hs on the same side of the ring	1
	Total:	15

Question			Ans	wer		Marks
5(a)		J	К	L	М	
		amine methyl ketone	aromatic amine aldehyde	amine methyl ketone	amide	
	J and L correct					1 + 1
	K correct					1+1
	M correct					1
5(b)(i)	hydrolysis					1
5(b)(ii)	P is C ₆ H ₅ NH ₂					1
	Q is CH ₃ CH ₂ CO ₂ N	Na				1

© UCLES 2017 Page 8 of 12

Question	Answer	Marks
5(c)	J is or NHCH ₃ or ONH ₂	1
	K is CHO	1
	L is $\bigcap_{O}^{NH_2}$	1
	\mathbf{M} is $\overset{H}{\bigcirc}$	1
	K&L only: two chiral atoms shown	1
5(d)	W is C ₆ H ₅ CO ₂ Na	1
	Total:	14

© UCLES 2017 Page 9 of 12

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer			
6(a)	Any of the three methods possible. Any 4 of the 5 points for each method available for maximum 4 marks. Method 1 Ensure both solutions (A and B) at 40 °C before mixing mix known volumes of A and B and start the clock at known time take out a sample / X and add it to ice-cold solvent titrate against HC1 repeat at time at known time intervals Method 2 Ensure both solutions (A and B) at 40 °C before mixing mix known volumes of A and B and start the clock at known time pour into ice-cold solvent or pour ice-cold solvent in titrate against HC1 repeat with different concentrations of either A or B, or repeat using different times Method 3 Ensure both solutions (A and B) at 40 °C before mixing mix known volumes of A and B and start the clock and add pH meter at a known time record the pH repeat pH readings at known time intervals	4		
6(b)(i)	from 1 and 3: when [RC l] is trebled, so is rate, so order w.r.t. [RC l] = 1	1		
	from 1 and 2: when both concentrations are doubled, rate doubles so [OH ⁻] has no effect on rate, so order w.r.t.[OH ⁻] = 0	1		
6(b)(ii)	rate = $k[RCl]$ AND units: $sec^{-1} 1/s$			
6(b)(iii)	relative rate = 2.0	1		

© UCLES 2017 Page 10 of 12

Question	Answer		
6(c)(i)	$\begin{array}{c} CI^{\delta^{-}} \\ C_{6}H_{5} \end{array} \begin{array}{c} CI^{\delta^{-}} \\ CH_{3} \end{array} \begin{array}{c} CI^{-} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ $	1	
	intermediate cation	1	
	OH ⁻ with lone pair and curly arrow	1	
6(c)(ii)	Beginning with candidate's mechanism in (c)(i): If S _N 1: racemate / mixture of / two optical isomers will be formed, because: the intermediate is planar / has a plane of symmetry / OH ⁻ can approach from top or bottom or from any direction If S _N 2: one optical isomer because attack always from fixed direction / from same side / the "configuration" always inverts / there is an asymmetric transition state	1	

© UCLES 2017 Page 11 of 12

Question	Answer					Marks		
6(d)(i)		δ value	number of H atoms	group	splitting	result with D ₂ O		
		1.4	3	CH ₃ / methyl	doublet	peak remains		
		2.7	1	OH / hydroxyl / alcohol	singlet	peak disappears		
		4.0	1	СН	quartet	peak remains		
	the three groups are in their correct places wrt the δ values							
	no. of H atoms for each peak agrees with group column							
	splitting patterns doublet, singlet and quartet are assigned to correct groups							
	peak identified as OH disappears with D ₂ O, no other peak disappears							
							Total:	16