CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/43

Paper 4 (Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	43

Questio	n	Marking point	Marks
1 (a)		oxygen: (1s ²) 2s ² 2p ⁴ fluorine: (1s ²) 2s ² 2p ⁵	1
(b)	(i)	F ₂ O / OF ₂	1
	(ii)	$\begin{array}{c c} \bullet \bullet & ++ \\ \bullet & F \\ \bullet & \bullet \end{array} \begin{array}{c} \bullet \bullet \\ \bullet & ++ \\ \bullet \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} ++ \\ \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} ++ \\ \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} ++ \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} ++ \\ \bullet $	1
((iii)	bent or non-linear	1
(c)	(i)	E° values: $F_2/F = 2.87 \vee$ and $Cl_2/Cl = 1.36 \vee$	1
		fluorine (has the more positive E^{e} so) is more oxidising	1
	(ii)	redox	1
((iii)	$ClF + 2KBr \longrightarrow KCl + KF + Br_2$	1
			[Total: 8
2 (a)	(i)	hydrogen chloride or HC1	1
	(ii)	 either (RCOC l) has two electron-withdrawing groups/atoms, making the more δ+/electron deficient or (RCOC l) has an oxygen, making the carbon more δ+/electron deficient or (RCOC l) has two electron-withdrawing groups, weakening the C-C l bond 	1
(b)	(i)	CH_3 CH_3 CH_3 Q Q	1
	(::)	1	
	(ii)	step 1: heat with MnO_4 /KMnO ₄ (+ acid or alkali)	
		step 2: PCl_3 + heat or $SOCl_2$ or PCl_5 step 4: $LiAlH_4$ (in dry ether)	1

Pa	age 3	;		Mark Schei	ne	Syllabus	Paper
			Cambridge Ir	nternational A Le	vel – May/June 2015	9701	43
3	(a)	(i)	isotope	relative abundance			1
			²⁴ Mg	78–79			
			²⁵ Mg	10			
			²⁶ Mg	12–11			
					(total must add up	o to 100 %)	
		(ii)	e.g. 0.78x24 + 0.1				1
	(b)	(i)	nitrates become m	ore stable (down	the group)		1
			as the ionic radius <i>or</i> charge density		reases		1
			decreasing its abil	ity to distort/polar	ise the NO_3 /nitrate ion		1
	((ii)	$4 \text{LinO}_3 \longrightarrow 2 \text{Li}$	$_{2}O + 4NO_{2} + O_{2}$			1
	(i	iii)	the charge densit sufficiently so the a		ions are too small (to polarise ble)	the anion	1
							[Total: 7
4	(a)	(i)	$K_{sp} = [Ag^{+}(aq)]^{2}[SC$	D ₄ ² (aq)] and unite	s: mol ³ dm ⁹		1
	((ii)	$K_{sp} = (2 \times 0.025)^2$	x (0.025) = 6.25 x	10 ⁻⁵		1
	(b)			ΔH^{0}_{lat}	2Ag ⁺ (g) + SO ₄ ²	^{;-} (g)	
			Ag ₂ S	O ₄ (s)	ΔH°	hyd	
				ΔH ^o s			
					Ag ₂ SO ₄ (aq) or		1
					2Ag⁺(aq) + SO ₄ ²	(aq)	1 1
	(c)	(i)	$E_{\text{cell}}^{\text{e}}$ (= 0.80 – 0.7	7 =) (+) 0.03V and	Ag⁺/Ag or Ag/silver or right		1
	((ii)	E _{cell} would be less	positive/more ne	gative		1
			because the [Ag⁺(a	aq)] (in the Ag ele	ctrode) is less than 1.0 mol dr	n ³	
	(iii)	no change				1

Page 4	Mark SchemeSyllabusCambridge International A Level – May/June 20159701	Paper 43
	more negative/less positive	1
(iv)	the [Ag ⁺ (aq)] will decrease	
(10)		1
(d)	$E_{\text{electrode}}$ becomes less positive or due to the common ion effect [Fe ³⁺ (aq)] = 0.2 mol dm ³	1
(d)		
	$[H^*] = \sqrt{(c.K_a)} = \sqrt{(0.2 \times 8.9 \times 10^4)}$ or 1.33 x 10 ² (mol dm ³) pH = $-\log([H^*]) = 1.9$ (or 1.87–1.89)	1
	דע]	otal: 13]
(a)	protons electrons neutrons	1
	¹⁴ C ² 6 8 8	1
(b)	CCl ₄ : no reaction GeCl ₄ and SnCl ₄ : for each steamy fumes evolved <i>or</i> white solid produced GeCl ₄ + 2H ₂ O \longrightarrow GeO ₂ + 4HCl SnCl ₄ + 2H ₂ O \rightarrow SnO ₂ + 4HCl	1 1 1 1
(c)	Ge/Sn use d–orbitals or Ge/Sn have low lying d orbitals or carbon cannot expand its octet or carbon cannot accommodate more than 4 bonded pairs	1
(d)	$Sn^{4+}/Sn^{2+} = +0.15V$ and $Pb^{4+}/Pb^{2+} = +1.69V$ and $Cl_2/Cl_2 = +1.36V$	1
	Sn^{2+} is oxidised by Cl_2 because its E° is less positive/more negative or Sn^{2+} is a good reducing agent due to its smaller E value than Cl_2 ora or Pb^{4+} is a stronger oxidising agent than Cl_2 so Pb^{2+} with Cl_2 reaction is not feasible or Sn^{4+} is a weaker oxidising agent than Cl_2 so Sn^{2+} with Cl_2 reaction is feasible	1
	$SnCl_{2} + Cl_{2} \longrightarrow SnCl_{4}$ or $Sn^{2^{+}} + Cl_{2} \longrightarrow Sn^{4^{+}} + 2Cl$ or $SnCl_{2} + Cl_{2} + 2H_{2}O \longrightarrow SnO_{2} + 4HCl$	1
(e) (i)	F = Le	1
(ii)	moles of $O_2(g) = 130/24000 = 5.417 \times 10^{-3} \text{ mol}$	1
	moles of electrons needed = 4 x 5.417 x 10 3 or 2.17 x 10 2 mol	
	no. of coulombs passed = 1.2 x 30 x 60 <i>or</i> 2160 C	1
	no. of electrons passed = $2160/1.6 \times 10^{-19}$ or 1.35×10^{22}	1
	no. of electrons per mole = $1.35 \times 10^{22}/2.17 \times 10^{2} = 6.2 \times 10^{23} \text{ (mol}^{-1}\text{)}$	1
		1

Page	e 5	Mark Scheme Cambridge International A Level – May/June 2015	Syllabus 9701	Paper 43
6 (a	i) (i)	CH ₃ COC <i>l</i> or ethanoyl chloride		1
	(ii)	electrophilic substitution		1
	(iii)	conc HNO ₃ and conc H ₂ SO ₄		1
	(iv)	CHI ₃		1
	· //>	$O \rightarrow O^{TNa^{+}}$ $O \rightarrow O^{H}$ $O_{2}N \rightarrow O_{2}N \rightarrow O_{2}N \rightarrow O^{H}$	D ₂	1
(b)) (i)			1
	(ii)	polyamide <i>or</i> condensation		1
	(iii)	H ₂ O/water		1
	(iv)	Sn/Fe + HC <i>l</i> + conc/aq/heat/warm		1
	(v)	harder or more dense or stronger or higher m.pt or tougher or mo due to cross-linking or more H-bonding between the chains	ore rigid	1
				[Total: 10]

Page 6 **Mark Scheme** Syllabus Paper Cambridge International A Level – May/June 2015 9701 43 7 (a) (i) heat with catalyst or heat with Al_2O_3/SiO_2 1 1 (ii) **B** is CH₃CH₂CH₃ (iii) C is $CH_2=CHCH_2CH_2CH_3$ 1 **D** and **E** are $CH_3CH=CHCH_2CH_3$ (one shown as cis, the other as trans) 1 F is CH₃CH₂CH₂CO₂H 1 G is CH₃CO₂H H is CH₃CH₂CO₂H (iv) geometrical or cis-trans or E-Z 1 (b) (i) 1 No particular conditions or in the dark 1 (ii) electrophilic addition (iii) CH_3 CH₃ CH₃ CH₂ CH СН CF Br Br Br δ + Br 1 Br δ-1 [Total: 10] 8 condensation 1 (a) (i) (ii) OH H_2N ΟН 'n 2 ö (iii) any two side-chain interactions mentioned with group between $-CO_2^-$ and $-NH_3^+$ Ionic attractions / bonds 2 van der Waals between alkyl / aryl / non-polar groups or valine hydrogen(H) bonding between -OH, -NH₂, COOH, -NH or serine -S-S- or disulfide bonds or between -SH groups or cysteine disulfur bond / bridge

Page 7	Mark Scheme Syllabus	Paper
	Cambridge International A Level – May/June 2015 9701	43
(b) (i)	$enzyme substrate G \xrightarrow$	
	 active site in words the enzyme has a specific shape or substrate shape is complementary to active site the substrate bonds/binds/fits to the active site or other substrates do no into active site 	
(ii)	Iabelled diagrams	
	 or in words inhibitor binds to enzyme away from the active site or inhibitor binds to allosteric site this changes the shape (or structure) of the active site) 1
	 substrate no longer fits the active site 	1
		[Total: 10
(a) (i)	use restriction enzymes <i>or</i> using an enzyme to break (the DNA) down into smaller fragments	1
(ii)	use the polymerase chain reaction <i>or</i> use DNA polymerase to replicate/copy (the sample of DNA)	1
(iii)	amino acids have different charges	1

Page	8	Mark Scheme S	yllabus	Paper
-		Cambridge International A Level – May/June 2015	9701	43
	/:)			
	(iv)	A piece of leather from an Egyptian tomb		
		A sample of skin from a mummified body		
		A fragment of ancient pottery	X	
		A piece of wood from a Roman chariot		
(b)	(i)	the electron density in the molecule <i>or</i> positions of atoms <i>or</i> interatomic distance/spacing between the atoms		1
	(ii)	phosphorus has the most electrons or phosphorus has the highest electron density		1
(c)	(i)	equilibrium constant (for the solution) of a solute between two (immiso solvents	ible)	1
		or ratio of the concentration of the solute in (each of the) two solvents	6	
		or ratio of the solubility of the solute in (each of the) two solvents		
	(ii)	$(\overline{0.0042}-x)/(25/1000)$		1
		x = 0.0252 - 6x x = 0.0036g		1
				[Total: 10
0 (a)	(i)	any three of the following structures $CH_3CH_2CH_3$ $CH_3CH=CH_2$ $CH_3C\equiv CH$ $CH_2=C=CH_2$ H_2 H_2C H_2 CH_2		2
	(ii)	K since it has the greatest % of hydrocarbons/carbon-containing comp or 99.6 % of it is burnt for energy	ounds	1
	(iii)	 any two from reacted with lime/CaO/soda lime/Ca(OH)₂/KOH/NaOH/ liquefied under pressure/≥5 atm dissolved in water under pressure/≥5 atm 		2
(b)	(i)	have a shorter carbon/hydrocarbon chain or shorter hydrocarbon or fewer carbon atoms in its chain or have high H/C ratio		1
	<i>(</i>)	Coal		1

Page 9	Mark Scheme Sy	llabus	Paper
	Cambridge International A Level – May/June 2015	701	43
	produces the largest amount of SO_2 or largest combined amount of SO_2 and NO_2		
(iii)	they burn at higher temperatures or release more heat on burning		1
(iv)	CO – the gas is toxic/poisonous or references to Hb and ability to carry	oxygen	1
	CO ₂ – the gas contributes to global warming		1
			[Total: 10