PMT

MARK SCHEME for the May/June 2014 series

9701 CHEMISTRY

9701/43

Paper 4 (Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		2		Mark Scheme	Syllabus	Paper
				GCE A	LEVEL – May/June 2014	9701	43
	Section A						
1	(a)	(i)	m. pl dens	. is high(er)/larg ity is high(er)/lar	e(r)/greater (for iron) ge(r)/greater (for iron)		[1] [1]
		(ii)	(high stron more	er m. pt. due to) g attraction betw e delocalised elec	een cations and electrons <i>or</i> trons		[1]
			(high	er density due to) greater A _r and smaller radius		[1]
	(b)	(i)	comp salt t	ponents to be ado pridge [<u>must be</u> la	ded: voltmeter <i>or</i> V abelled]		[1] [1]
		(ii)	M1: M2: M3	A and B either C or D C and D	copper (metal) or Cu and iron (met as 1 mol dm ⁻³ /1 M Cu ²⁺ or CuSO ₄ or CuC l_2 or Cu (NO Fe ²⁺ or FeSO ₄ etc.	al) or Fe ₃) ₂ etc. and	[1] [1] [1]
		(iii)	E ^e cell	= 0.34 + 0.44 = (0.78 (∨)		[1]
		(iv)	 if C is Fe²⁺; (as [C] increases), the E of the Fe²⁺/Fe increases/becomes more posit less negative 			more positive/ [1]	
			so t nega	he overall cell itive	potential/ <i>E</i> _{cell} would decrease/b	ecome less p	oositive/more [1]
			or				
			if C posit	is Cu ²⁺ ; (as [(ive/less.negative	C] increases), the E of the Cu ²⁺ /	Cu increases/b	ecomes more [1]
			so th	e overall cell pot	ential/E _{cell} would increase/become	more positive/	less negative [1]
	(c)	(i)	(colo <i>or</i> (e	ur change is) col nd point is the fire	ourless to pink/pale purple st) permanent (pale) pink/pale purple	colour	[1]
		(ii)	{n(M n(Fe	$nO_4^{-}) = 0.02 \times 18^{2^+}) = 5 \times n(MnO_4^{-})$	8.1/1000 = 3.62 × 10 ⁻⁴ mol} □) = 1.81 × 10⁻³ mol		[1]
			mass	s of Fe = 55.8 x 1	$.81 \times 10^{-3} = 0.101 \text{ g} (\text{M2} \times 55.8) \text{ ecf}$		[1]
			$M_{\rm r} = {\rm r}$	mass/moles=0.5	500/1.81 × 10 ⁻³ = 276.2 ecf		[1]
							[Total: 16]
2	(a)	(i)	A co surro	<i>mplex</i> is a comp ounded by/bonde	oound/molecule/species/ion_formed d to one or more ligands/groups/mo	l by a central m lecules/anions	netal atom/ion [1]

A *ligand* is a species that contains a **lone pair** of electrons that forms a **dative bond** to a metal atom/ion/*or* a lone pair donor to metal atom/ion [1]

PMT

Page 5	Mark Scheme Syllal	ous Paper
	GCE A LEVEL – May/June 2014 970	1 43
(b) (i)	Compound Z is HO CH CN	
		[1
:	step 1: HCN + NaCN <i>or</i> HCN + base step 2: H ₂ + Ni <i>or</i> LiA <i>t</i> H ₄ <i>or</i> Na + ethanol	[1 [1
(ii)	bromine decolourises <i>or</i> goes from orange to colourless <i>or</i> white pp	t. formed [1
e.g.	HO HO Br HO Br	[1
(c) (i)	NaO OH NH ₂ (or ionic)	[1
(ii)	HO HO HO	[1
(iii)	CH ₃ COO CH ₃ CO ₂ OCOCH ₃ NHCOCH ₃	
	M1: amide M2: alcoholic ester M3: <u>both</u> phenolic esters	[1 [1 [5] max [4
(d) amic este		[1 [1
		ITotal· 14

Page 6		Mark Scheme	Syllabus	Paper
		GCE A LEVEL – May/June 2014	9701	43
5	(a) (i) –O⊦	<i>f or</i> hydroxyl groups (allow alcohol groups)		[1]
	(ii) alke	nes <i>or</i> C=C (double) bonds <i>or</i> carbon double bonds		[1]
	(iii) CH₃	CH(OH) <i>or</i> CH ₃ CO- groups		[1]
	(b) V is CH ₃	CH(OH)CH=CH ₂		[1]
	W is CH	₃ CH=CHCH ₂ OH		[1]
	(c) compou	nd V shows optical isomerism		
	(ecf for '	geometric(al)' if candidate's ${f V}$ is capable of cis-trans)		[1]
	H ₂ C===($CH_3 CH_3 HO -C CH_3 HO -C CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_$		[4]
				[1]
	(d)	ОН ОН		
		I OH <i>or</i> CH ₃ CH(OH)CH(OH)CH ₂ OH		[1]
				[Total: 8]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	43

6 (a)

(b)

feature	level of bonding
formation of α-helix	secondary
formation of disulfide bonds	tertiary
formation of ionic bonds	tertiary
linking amino acids	primary

name

Deoxyribose

Cytosine

Phosphate

Thymine

[3]

4	×	[1]
---	---	-----

[1]

[1]

(c) (i) H/hydrogen (bonds between bases)

block letter

J

Κ

L

Μ

(ii) Bonds are weak and so require relatively little energy to break/are easily broken

(d) ____

	(sugar, J)	(base, M)
DNA	deoxyribose	thymine/T
RNA	ribose	uracil/U

[1]

[Total: 10]

7	(a) Expression:	n = $\frac{100 \times 2.5}{1.1 \times 74}$ or equivalent	[1]
		n = 3.1 hence G has three carbon atoms	[1]

- (b) (i) $(\delta 1.1)$ RCH₃ or RCH₂R or methyl or CH₃
 - (δ 2.2) (R)CH₂CO(R) or CH₃CO(R)

(
$$\delta$$
 11.8) (R)COOH or (R)CONH(R) $3 \times [1]$

Page 8		Mark Scheme	Syllabus	Paper
		GCE A LEVEL – May/June 2014	9701	43
(ii)	The	(–OH) peak at δ 11.8 (disappears)		[1]
	beca (e.g.	ause of (O)H-D exchange <i>or</i> equation showing this R-OH + $D_2O \rightleftharpoons R$ -OD + HOD)		[1]
(iii)	CH ₃	CH ₂ CO ₂ H		[1]
(c) (i)				
			НО	ОН
	H₃C·	C $$ CH ₃ or $-$ C $$ C	or Z	
		H ₃ C O		
	or	H ₃ C H		
				[1]
(ii)	lf me δ 3.3	ethyl ethanoate: δ 2.0–2.1 3–4.0		[1] [1]
	Or if δ 3.3	² 1, 3-dioxolane: δ 3.3–4.0 3–5.0		[1] [1]
	Or if δ 3.3	² 1, 2-dioxolane: δ 0.9–1.4 3–4.0		[1] [1]
	Or if δ 0.3	dihydroxycyclopropane: δ 0.9–1.4 5–6.0		[1] [1]
				[Total: 11]
8 (a) (i)	Amio	de <i>or</i> ester <i>or</i> peptide		[1]
(ii)	Hyd	rolysis		[1]
(iii)	Drug	9 B		[1]
(iv)	two	ester and one amide groups circled		[2]
(b) (i)	At point Q because the hydrocarbon tails region is hydrophobic/non-polar/ form van de Waals only or can dissolve in the fat-soluble area			/ form van der [1]
(ii)	The	y all contain polar <i>or</i> hydrogen-bonding (groups)		[1]
(c) (i)	rang	e 1×10^{-9} to 1×10^{-7} m		[1]
(ii)	(high	ner frequency radiation could) cause tissue/cell damag	e or mutation	٢ ٨ ٦
	orna			[Total: 9]