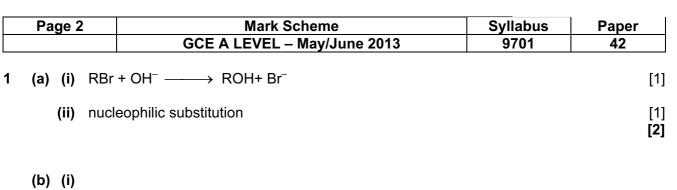
PMT

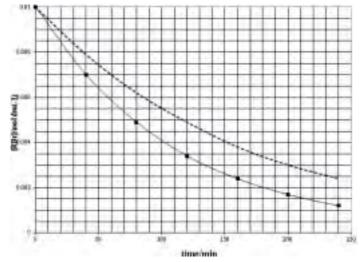
MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.


Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

plotting of all points (plotted to within $\frac{1}{2}$ small square) [1]

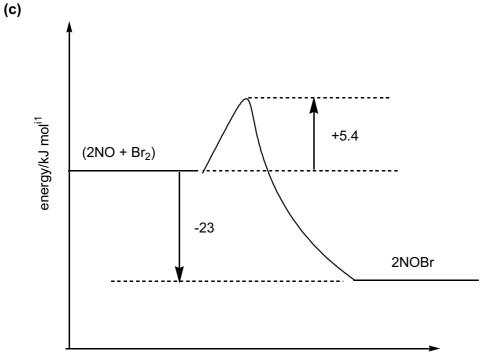
good line of best fit [1]

(ii) t_{1/2} = 118 min or 79 min (± 5 min) or construction lines for two half-lives and mention that half-life is constant or calculate the ratio of two rates at two different concentrations [1]
(iii) either ratio of initial rates (slopes) or ratio of t_{1/2} or ratio of times for [RBr] to fall to the same level: all should be = 1.5 [1]

therefore reaction is first order w.r.t. [OH⁻]

(iv) rate = k[RBr][OH⁻]

initial rate = $0.01 / 185 = 5.4 \times 10^{-5} \text{ (mol dm}^{-3} \text{ min}^{-1}\text{)}$ [1]


$$k = 5.4 \times 10^{-5} / (0.01 \times 0.1) = 0.054 \text{ (mol}^{-1} \text{ dm}^3 \text{ min}^{-1})$$
[1]

[8 max 7]

[1]

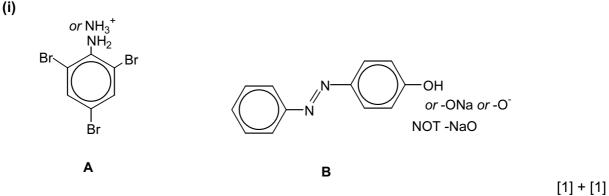
[1]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	42

extent of reaction

 $\begin{array}{l} \mbox{four marking points: one activation "hump"} \\ \underline{2} \mbox{NOBr (not just NOBr)} \\ \Delta H \mbox{ labelled correctly (arrow down, or double headed, or just a line)} \\ E_a \mbox{ labelled correctly (arrow up, or double headed, or just a line)} \\ \mbox{ all four points [2]} \\ \mbox{ three or two points [1]} \\ \mbox{ [2]} \end{array}$

[Total: 11]


4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	42
•	at 1 atm Pt $H^+/HCl at 1 mol dm^{-3} and 298K$ $H_2(g) going$	ition, with H ₂ bubl	
	solution at 1 mol dm ⁻³ (or 0.5 M if H		
<i>E</i> ° =	1.33 – (-0.41) = 1.74 V		[1]
Cr ₂ O	$P_7^{2^-}$ + 14H ⁺ + 6Cr ²⁺ \longrightarrow 8Cr ³⁺ + 7H ₂ O		[1]
Colo	ur would change from orange		[1]
to gro	een		[1] [8]
ere are a = –lo	two ways of calculating the ratio: $g_{10}(K_a) = -\log_{10}(1.79 \times 10^{-5}) = 4.747 (4.75) \text{ or } [\text{H}^+] =$	10 ^{-5.5} = 3.16 x 10 ⁻	⁶ [1]
J₁₀([B] /	/ [A]) = pH – pK _a = 0.753 (0.75) <i>or</i> [salt] / [acid] = K _a /	[H ⁺]	[1]
= 1.79 ⁻ [A] / [E	$x 10^{-5} / 3.16 \times 10^{-6} = 5.66$ B] = <u>0.177</u>)		[1] io = [3] marks)
	hydi gas : $E^{\circ} =$ Cr_2C Colo to gr e^{re} are a = -lo $h_{10}([B], [A])$ [B] / [A]	GCE A LEVEL – May/June 2013hydrogen gas at 1 atmmathematical formula (figure (fig	GCE A LEVEL – May/June 20139701hydrogen gas at 1 atmImage: state of the state o

	Pa	ige 5	5	Mark Scheme	Syllabus	Paper
				GCE A LEVEL – May/June 2013	9701	42
	(c)	.,		$CO_2Na + HCl \longrightarrow CH_3CO_2H + NaCl$ $CO_2H + NaOH \longrightarrow CH_3CO_2Na + H_2O$		[1] [1]
	(d)	e.g or	hydr hydr nitra dehy (or ti	rolysis of esters $\text{RCO}_2\text{R'}$ (+ H_2O) \longrightarrow RCO_2H + R'OH rolysis of amides: RCONH_2 (+ H_3O^+) \longrightarrow RCO_2H + H_2 rolysis of nitriles: RCN (+ H_3O^+ + H_2O) \longrightarrow RCO_2H tion of benzene (or any arene): C_6H_6 + HNO_3 \longrightarrow C_3 (dration of alcohols, e.g. : $\text{CH}_3\text{CH}(\text{OH})\text{CH}_3$ \longrightarrow CH_3 he reverse) genation of ketones, e.g. : CH_3COCH_3 + X_2 \longrightarrow CH_3	NH_4^+ + NH_4^+ ${}_6H_5NO_2 (+ H_2O)$ CH=CH ₂ + H ₂ O	[2]
3	(a)	(i)		D ₃ + H₂SO₄ c (both acids) and 30°C < T < 60°C <i>or</i> warm		[Total: 17] [1] [1]
		(ii)		e HNO₃ <i>or</i> HNO₃(aq) room temp. (allow T ≤ 30ºC)		[1] [3]
	(b)			termediate from methylbenzene)		[1] [1]

(c) Sn/tin (or SnC l_2 , Fe) + HCl (NOT H₂SO₄ or H⁺, Zn, or LiAlH₄.) [1] [1]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	42

(d) (i)

- (ii) $NaNO_2 + HCl or H_2SO_4 or H^+ or HNO_2$ [1] $T \le 10^{\circ}C$ [1] [4 max 3]
- (e) (i) amide
 - (ii) $M_r = 108 + 11 + 14 + 16 = 149$

%N = (14 x 100)/149 = 9.4%

(iii) NHCOC₂H₅

[1] **[3]**

[1]

[1]

- [Total: 11]
- (a) (i) Many electrons of similar energy in a valence-shell orbital or successive ionisation energies rise steadily (no big jumps) or ability to form bonds with ligands can stabilise very low or very high oxidation states or 4s + 3d orbitals/shells/energy levels have similar / same energies

(ii)
$$VO_2^+: +5$$

 $CrF_6^{2-}: +4$
 $MnO_4^{2-}: +6$
[3 × 1]
[4]

PMT

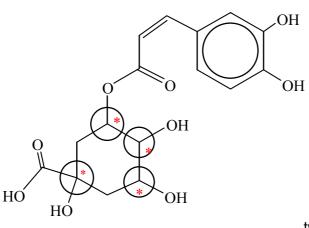
Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	42

(b)

• (colour due to) absorption of light/photons/frequencies/wavelengths or

colour seen is complement of colour absorbed.

- d-orbitals/d-subshell split (by ligand field)
- (when photon is absorbed), electron is promoted *or* moves (from lower) to higher (d–)orbital
- energy difference/gap or ΔE or splitting corresponds to photon/frequency/wavelength in visible region
- in s-block elements the energy gap is too large (to be able to absorb visible light)

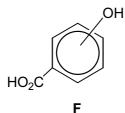

[any four 4 × 1] [4]

(c) (i)	$2MnO_4^{-} + 2H_2O + 5SO_2 \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 4H^+$	[1]
(ii)	solution will go from purple	[1]
	to colourless	[1] [3]
(d) (pa	le) blue solution	[1]
giv	es a (pale) blue ppt.	[1]
wh	ich re-dissolves, <i>or</i> forms a solution, which is dark/deep blue <i>or</i> purple	[1] [3]

[Total: 14]

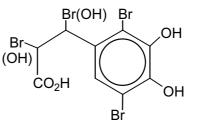
Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	42

5 (a) (i)


two or three centres correctly identified [1]

- four centres correctly identified [2]
- (ii) C₁₆H₁₈O₉
 [1]

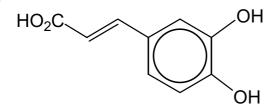
 (iii) 3 moles of H₂
 [1]


 (iv) in cold: 3 moles of NaOH
 [1]
 - ,
 - on heating: 4 moles of NaOH [1]
- (b) (i) hydrolysis
 - (ii) alkene or C=C [1]
 - (iii) with Na2CO3(aq): carboxylic acid[1]with Br2(aq): phenol[1]

(iv)

(OH can be at the 3, 4, or 5 positions, but not the 2 or 6 positions) [1]

(v) geometrical or cis-trans or E-Z



- G(ring subst. allow 2 or 3 Br in ring)[1](addition to C=C: allow one of the aliphatic Br
to be OH, but not both)[1]
 - [1]

[1]

Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	42

(vi)

skeletal or structural [1] [9 max 8]

(c) $M_r(\mathbf{E}) = 180$, so 0.1 g = 1/1800 (5.56 x 10⁻⁴) mol

3 mol NaOH react with 1 mol of **E**, so $n(NaOH) = 3/1800 = 1/600 \text{ mol} = 1.67 \times 10^{-3} \text{ mol}$ [1]

volume of 0.1M NaOH = 1000/(600 x 0.1) = 16.7 cm³

[1] **[3]**

[1]

[Total: 17]

Page 10	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	42

6 (a)

Γ		
substance	protein synthesis	formation of DNA
cysteine	\checkmark	
cytosine		\checkmark
glutamine	\checkmark	
guanine		\checkmark

		[3] [3]
(b) (i)	Hydrogen bonding	[1]
	Between bases or between A,T, C and G (all four needed)	[1]
(ii)	Bonds are (relatively) weak or easily broken	[1]
	This enables strands to separate or DNA to unzip/unwind/unravel.	[1] [4]

(c) changes / mutations in DNA

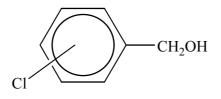
• by the addition / insertion /deletion / substitution / replacement of a base

• adds / deletes / replaces an amino acid or changes the amino acid sequence

• this causes a loss of function or changes the shape / tertiary structure of the protein

any three points [3]

[3]


[Total: 10]

Page 11	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9701	42

7. (a) (i) $\frac{43.3}{3.35} = \frac{100}{1.1 \text{ x n}}$

n =
$$\frac{100 \times 3.35}{43.3 \times 1.1}$$
 = 7.03 = 7 (calculation must be shown) [1]

- (ii) The M and M+2 peaks are in the ratio 3 : 1 hence the halogen is chlorine/Cl [1]
- (iii) L contains 7 hydrogen atoms *or* there are 3 types/environments of proton/H [1]
- (iv) The multiplet with 4 hydrogens *or* peaks at δ 7.3 suggests a benzene ring The singlet with 2 hydrogens *or* peak at δ 4.7 suggests a –CH₂– group The singlet with 1 hydrogen *or* peak at δ 2.3 suggests an –OH group *or* reaction with Na suggests an OH group OH must be an alcohol, not a phenol (due to its δ value) Since L also contains 7 carbon atoms and chlorine, this accounts for 126 of the 142 mass, the remaining atom must be oxygen Thus L is

(allow the 2-, 3- or 4- isomer)

[6] **[9 max 7]**

- (b) (i) we expect propene to have a CH₃ peak *or* a peak at m/e 15 *or* cyclopropane would have fewer peaks
 - (ii) cyclopropane would have 1 peak (ignore splitting) propene would have 2 (*or* 3, *or* 4) peaks (ignore splitting) *or* propene would have peaks in the δ 4.5-6.0 (alkene) region no splitting of cyclopropane peak (any two points)

[2] **[3]**

[1]

[Total: 10]

Page 12	2	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – May/June 2013	9701	42
8 (a) (i)	(a) (i) $CH_2 = CH - CO_2H$ or $CH_2 = CH - CO_2R$ or $CH_2 = CH - COCl$			
(ii)	addi	tion (polymerisation)		[1]
(iii)	C(CI	H ₂ OH) ₄		[1]
(iv)	wate	r		[1] [5]
(b) (water is bonded to the polymer by) hydrogen bonding hydrogen bonds are weak or easily broken				[1] [1] [2]
(c) (i)		s-linking causes no reduction in the number of –OH gr oss-linking molecules also have –OH groups	oups	[1]
(ii)	 (ii) property e.g. becomes harder / more rigid / less flexible / stronger / higher melting point. because the chains are more strongly / tightly held 			melting [1] [1] [3]
	[Total:			