UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/43

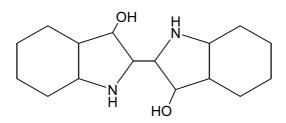
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

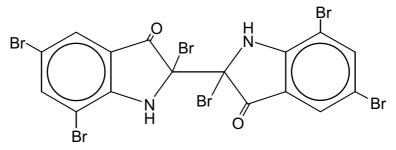
Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.


	P۵	ge 2		Mark	Scheme: Teachers' version	Syllabus	Paper
		J - L			AS/A LEVEL – May/June 2012	9701	43
1	(a)	(i)	the e	enthalpy change	e/released when 1 mole is formed		[1]
			of io	nic lattice from	the gas phase ions		[1]
		(ii)	Mg ²⁺	+ 0 ²⁻	→ MgO		[1]
							[3]
	(b)			ments needed:			[4]
		initia	al + fi	nal temperature	of water (in calorimeter) e/temperature change/temperature rise	(of the water)	[1] [1]
				Mg (used)/mass <i>ime/moles/mas</i>	s MgO is of oxygen used		[1]
							[3]
	(c)				50 + 496/2 - 141 + 798 – 3791		[0]
			= <u>-5:</u>	5 <u>2</u> kJ mol ^{−1}			[3] [3]
	(-1)	Na	$\mathbf{O}(z)$				[4]
	(u)	Mg	gO(s)	+ H ₂ O(aq/I) -	$\longrightarrow 2NaOH(aq)$ $\longrightarrow Mg(OH)_2(s) or Mg(OH)_2(aq)$		[1] [1]
		рн	12.5-		ID 8-10.5 [Mg(OH) ₂] respectively		[1] [3]
							[Total: 12]
2.	(a)	(i)					
	(u)	(')			$ \begin{pmatrix} \bullet \bullet \\ \bullet \bullet \\ \bullet \bullet \\ \bullet \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet$		
							[1]
		(ii)	-180) kJ mol ⁻¹			[1]
		(iii)			endothermic) so high T and equilibrium ed to break N-N bond in N ₂	pushed over to	NO side. [1]
		(iv)	-180) = 2 E(NO) – 9 C) = +655 kJ m	94 – 496		[1]
				<i>5)</i> – 1033 kg III			[1] [5]
	(b)	(i)	(fron	n 1 and 2:)	as p(NO) halves, rate decreases to 2	/ so order = ?	[1]
	(~)	(')		n 1 and 3:)	as $p(H_2)$ halves, so does rate, so or		[1]

	Pa	ge 3			Ма	rk Sche	eme: Teachers'	version		Syllabus	Paper	•
					GCE	AS/A	LEVEL – May/J	une 2012		9701	43	
		(iii)	NO - cros	+ NO + s out a	ll spec ⊦ H₂ + () + H ₂ + es com € + H ₂ +	nmon to both sid	$+ \oplus + H_2O + N_2 +$				[1] [1]
		(iv)	O fo or:	rmed f step	rom NO) e it invo	olves H_2					[1] [1] <i>[1]</i> [1] [8]
	(c)	(i)	NO									[1]
		(ii)					$_{3}^{-} \longrightarrow 3Fe^{3+}$ $D_{2} \longrightarrow Fe^{3+}$	+ NO + 2H ₂ O + NO + H ₂ O)				[1]
		(iii)	dati	ve/coo	ordinate	bondin	ng					[1]
		(iv)	[Fe(I	H₂O) _{6-n}	n(NO)n]	²⁺ (r	ו = 1-6)					[1] [4]
											Toto	
											[Tota	
3.	(a)	(i)	C₁ ₆ ⊢	I ₁₀ N ₂ O	2							[1]
		(ii)	keto	ne, alk	ene, a	nine, ai	ryl (benzene/are	ne/phenyl)			(any 3)	[2] [3]
												[9]
	(b)	(i)	redu	ction c	or redox	([1]
		(ii)	NaB	H₄ or L	_iA <i>l</i> H₄	(NOT	H ₂ + Ni)					[1] [2]
	(c)	1.	2,4-[ONPH	[1]		red/yellow-ora	ange/orange ppt.	[1]	no	reaction	
		2.	Na n	netal	[1]		no reaction			gas given o	ff/fizzing	[1]
				SOCl ₂ warm			no reaction		S	teamy fume misty/whit	-	[1]
		2 x	"no re	eactior	າ"			must be li	inked	l to "correct	reagent"	[1] [5]

PMT

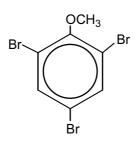
Mark Scheme: Teachers' version	Syllabus	Paper
GCE AS/A LEVEL – May/June 2012	9701	43


(d) (i)

[1]

- (ii) $M_r = 262$, so 2.5 g = 2.5/262 = 9.54 × 10⁻³ mol [1] (1 mol indigo absorbs 9 mol of H₂) so volume of H₂ = 9 × 24 - 9.54 × 10⁻³ = **2.06 dm³** (2060 cm³)
 - [1] **[3]**

(e)

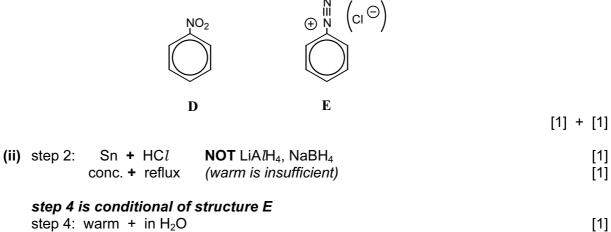

- 2 x Br on C=C [1]
- a Br on each ring [1]
- TWO non-adjacent Br on each ring [1]
 - [3]

[Total: 16]

4	(a)	(i)	volatilities decrease down the group	[1]
			due to greater van der Waals (VDW) forces (intermolecular is not sufficient)	[1]
			due to larger no of electrons	[1]
		(ii)	CCl ₄ does not react with water	[1]
			CCl ₄ unreactive due to no d -orbitals	[1]
			GeCl ₄ and PbCl ₄ hydrolyse/react	[1]
			$MCl_4 + 2H_2O \longrightarrow MO_2 + 4HCl (M = Ge or Pb)$	[1] [7]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	43
(b) (i) B is	PbSO ₄ and C is PbCl ₂		[1
(ii) SnC	$P_2 + 2H_2SO_4 \longrightarrow Sn(SO_4)_2 + 2H_2O$		[1
Pb	$O_2 + H_2SO_4 \longrightarrow PbSO_4 + H_2O + \frac{1}{2}O_2$		[1
P	$bO_2 + 6HCl \longrightarrow H_2PbCl_6 + 2H_2O$		[1
	$H_2PbCl_6 \longrightarrow PbCl_2 + 2HCl + Cl_2$		[1 [5 max 4
			[Total: 11

5 (a) (i)


[1]

[4]

(ii) Na metal Fizzes/gas given off with phenol C_6H_5OH + Na $\rightarrow C_6H_5ONa$ + ½ H ₂	or or or	NaOH phenol dissolves (anisole doesn't C ₆ H ₅ OH + OH ⁻ \rightarrow C ₆ H ₅ O ⁻ + H	,
$ \bigcirc OH + Na \longrightarrow \bigcirc ONa + \frac{1}{2} H_2 $	or	OH → NaOH → ONa	+ H ₂ O
(neutral) iron(III) chloride Solution goes purple/violet			[1] [1]

 $3C_6H_5OH + FeCl_3 \rightarrow Fe(OC_6H_5)_3 + 3HCl$

(b) (i)

[1] **[5 max 4]**

Pa	ge 6		Syllabus	Paper
		GCE AS/A LEVEL – May/June 2012	9701	43
(c)	~	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CN
		F G H	J	
		F must be an amide		[4]
	(ii)	reaction 1: H_2 + Ni <i>or</i> LiA lH_4 reaction 2: heat + aqueous HC l		[1] [1]
				[6]
				[Total: 14]
6 (a)	(i)	Condensation		[1]
	(ii)	ala-ala, gly-gly, ala-gly		[2] [3]
(b)	(i)	Correct sugar-phosphate backbones (with two sugars and one phosphate attached)		[1]
		C – G pair correct or A – T pair correct		[1]
		deoxyribose label and all bases coming from sugars		[1]
	(ii)	Replication would be slower/difficult		
	()	because the DNA/strands could not be separated		[1] [4]
(c)	(i)	Some amino acids have more than one (triplet) code		[1]
	(ii)	loss/disruption of ionic bonding/hydrogen bonding		[1]
	(iii)	There would be a potential loss of all tertiary structure		
		<i>or</i> <u>frameshift</u> – deletion of a base changes protein structure		[1]
				[3]
				[Total: 10]

Pa	ge 7		Scheme: Teachers' version	Syllabus	Paper
		GCE A	S/A LEVEL – May/June 2012	9701	43
(a)					
	+			—	
			Start point		
I	L	Glutamic acid	Glycine	Lysine	
		Glutamic acid betwe	•		ļ
		Lysine between – ar Glycine at, or <i>very</i> c	•		
					ĺ
(b)	(i)	-	<u>ration</u> of a solute in each of two		
		or equilibrium consta	ant representing the distribution	of a solute between two	o solvents.
	(ii)	illustration of some r	method of getting into our body v	ia the food chain	I
		They dissolve prefer	rentially in fats/oils		
					ſ
(c)	(i)	$156 = C_3 H_6^{35} C l^{79} Br$	+		
		$158 = C_3 H_6^{37} C l^{79} Br$	+		
		$158 = C_{3}H_{6}^{35}Cl^{81}Br^{+}$ 160 = C_{3}H_{6}^{37}Cl^{81}Br^{-}	+		
	(ii)	m/e = 15 Species =	CH₃⁺		

[Total: 10]

PMT

Pa	ge 8	Mar	k Scheme: Teachers'	version	Syllabus	Paper	•
		GCE	AS/A LEVEL – May/J	une 2012	9701	43	
(a)	XX	AN AN					
	L	DPE	HDPE	minimum of 2	chains suitable s	sketches	
	(The clos	e packing of ι	inbranched side chains	s means)			
	LDPE mo chains	ore space be	tween the chains/poly	mers or HDPE	less empty space	e between	۱t ا

(b) van der Waals' (VDW) forces are weaker

[1] [1] **[2]**

Addition OR	condensation
requires C=C/double bond	does not need C=C/double bond
uses the same functional group	needs two different functional groups
same general (empirical) formula as monomer	different formula
no loss of small molecule/H ₂ O/HCI	small molecule /H ₂ O/HCI is formed

Any two differences

[1] **[2]**

(d)	(i)	(through its long chain of) delocalised electrons/mobile electrons free electrons is not sufficient	[1]
	(ii)	planar	[1]
		the π bonds/p-orbitals overlap (with each other)	[1]
	(iii)	C_8H_6 C_4H_3	[2]
			[5 max 4]
			[Total: 10]