UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	•
	GCE A LEVEL – May/June 2012 9701				42	
1	(a) (i)		alpy/energy change/released when <u>1 mol</u> of <u>ions</u> … e <u>gas phase</u> (are dissolved in) <u>water</u>			[1] [1]
	(ii) $Mg^{2+}(g) + aq (or H_2O) \rightarrow Mg^{2+}(aq) or [Mg(H_2O)_6]^{2+}$					[1]
	(iii) Mg ²⁺ has a smaller radius/size or greater charge density			an Ca ²⁺ (ions re	equired)	[1]
	(iv) O^{2-} reacts with water to give OH^- or equation: $O^{2-} + H_2O \rightarrow 2OH^-$			[1] [5]		
	(b) (ap •	mea	us: "insulated" calorimeter, water and thermometer) sure (known volume/mass of) water <i>or</i> stated volume of the temperature (of the water – NOT the MgCl ₂)	of water (into ca	lorimeter)	

- weigh out known mass of $MgCl_2$ or stated mass of $MgCl_2$
- take final/highest/constant temperature or record temperature change/rise 4 × [1] [4]

(c) (i)	$\Delta H_{sol}^{e} = 641 - 801 = -160 \text{ kJ mol}^{-1}$	[1]
(ii)	ΔH_{hyd}^{e} = (1890 – 2526 – 160)/2 = –398 kJ mol ⁻¹	[2] [3]

(d)

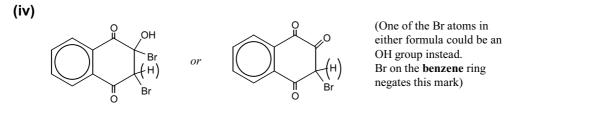
- solubility: $MgSO_4 > BaSO_4$ or decreases down the group
- because ΔH_{sol} is more endothermic for BaSO₄ or more exothermic for MgSO₄
- due to larger r_{ion} or smaller charge density of Ba²⁺ (ion has to be mentioned)
- leading to smaller LE and HE or LE and HE decrease
- but difference in HE (between Mg²⁺ and Ba²⁺) is larger than the difference in LE (between MgSO₄ and BaSO₄) or HE is dominant or HE decreases more than LE

any 4 points [4]

[4]

[Total: 16]

Page 3		Mark Scheme: Teachers' version	Syllabus	Bapar		
raye s		GCE A LEVEL – May/June 2012	9701	Paper 42		
(a) (i)		$C + + O + + + O = Or \qquad C + + + + + + + + + + + + + + + + + +$	0 + +			
				[1]		
(ii)	inco	mplete combustion (of hydrocarbon fuels) or insufficient	t O₂/air	[1]		
(iii)	NO -	+ CO $\rightarrow \frac{1}{2}N_2$ + CO ₂				
		$O + \frac{1}{2}O_2 \rightarrow CO_2$				
	equa	ation needs to be balanced		[1] [3]		
(b) $\Delta H = 394 - 2 \times 111 = (+)172 \text{ kJ mol}^{-1}$ [2] [2]						
(c) (i)	ligan	nd exchange/displacement/replacement/substitution		[1]		
(ii)	•	d-orbitals are split (by the ligand field) <i>or</i> orbitals near li the splitting/energy gap depends on the ligands (surre (ion) when <u>an electron</u> moves from lower to higher orbital/ excited light/a photon is absorbed <i>or</i> colour seen/reflected/to colour absorbed ("emitted" contradicts this mark) different energy gap means different frequency absorbed	ounding the ion /energy level o ransmitted is c) <i>or</i> the metal <i>r</i> is promoted/ complement of		
(iii)	(<i>or</i> this working mark can be awarded for any valid calculation that shows that order w.r.t. complex is 1)					
		equation: rate = k[complex]		[1] [1]		
(iv)	iťs tl	hanism 2 he only one that does not involve CO in the rate dete complex] <u>only</u> .	rmining step <i>or</i>	[1] rate depends [1]		


2

[11 max 10]

[Total: 15]

	Page 4		Mark Sche	me: Teachers' version	Syllabus	Paper	•
			GCE A LE	VEL – May/June 2012	9701	42	
3	(a) (i)			arene/aryl/benzene/phenyl. mark the <u>first 3</u> the candidate ha		any three	[2]
	(ii)	Law	·)DNPH/Brady's sone ⇒ orange/red, (not yellow) ppt	or FeCl₃ (aq or neutral) or purple/violet with A ,	<i>or</i> Br ₂ (aq) <i>or</i> white ppt w	ith A ,	[1]
			$\mathbf{A} \Rightarrow \text{nothing}$	or and nothing with Lawsone	<i>or</i> and decolo with Lawsone		[1]

(iii) NaBH₄ or LiAlH₄ or SnC l_2 or Na + ethanol or any suitable reducing agents with $E^{\circ} < 0.2 V$, e.g. SO₂. **NOT** H₂ + Ni etc. [1]

(b) (i)
$$E_{cell} = 1.33 - 0.36 = (+)0.97 (V)$$
 [1]

(ii)
$$Cr_2O_7^{2-} + 8H^+ + 3C_{10}H_8O_3 \rightarrow 2Cr^{3+} + 7H_2O + 3C_{10}H_6O_3$$

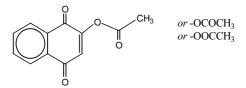
3:1 ratio [1]

balancing [1]

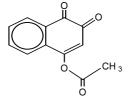
(iii) =
$$0.05 \times 7.5/1000 = 3.75 \times 10^{-4} \text{ mol}$$
 [1]
 $n(\mathbf{A}) = 3 \times 3.75 \times 10^{-4}$
= $1.125 \times 10^{-3} \text{ in } 20 \text{ cm}^3$

$$[A] = 5.63 \times 10^{-2} \text{ mol dm}^{-3} \text{ (allow 5.6, 5.62, 5.625 etc.)}$$
[1]

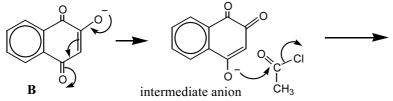
້[5]


[1] **[6]**

[1]


[1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

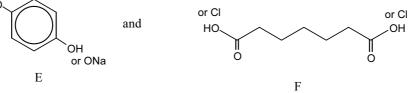

(c) (i) compound C is

(ii) compound D is

(iii) mechanism: 3 curly arrows in **B** *or* correct intermediate anion [1] a curly arrow from an O⁻ or an oxygen with a lone pair to the carbon of the C=O group in CH₃COC*l*, and a second curly arrow breaking the C-C*l* bond [1]

[4 max 3]

[Total: 14]


	Pa	ge 6		Mark Scheme: Teachers' version	Syllabus	Paper
				GCE A LEVEL – May/June 2012	9701	42
4	(a)	mor	(g); Br ₂ is (l); I ₂ d <u>of electrons</u> orary dipole forc	[1]		
	(b)	(ii)	due diag CH ₃ - due pola	> H_2S (see * below for mark) to H-bonding in H_2O (none in H_2S) ram minimum is: $H_2O^{\delta\delta^+}H$ -OH or H_2O :·H-OH [allow (-O-CH ₃ > CH ₃ CH ₂ CH ₃ (see * below for mark) to dipole in CH ₃ -O-CH ₃ (O is δ - not needed, but O i r rect comparison of boiling points for both	, <u>-</u>	[1] [1] or CH ₃ OCH ₃ is [1] [1] [4]
	(c)	but '	'no lc	6 bonding pairs/bonds and <u>no lone pairs</u> (bonds can be one pairs' can <i>only</i> be read into a diagram showing 6 <u>be</u> gram <i>or</i> 'shape is octahedral'		gram e.g. S-F,
5	(a)	due	to C	CHC l_2 CO ₂ H > CH ₂ C l CO ₂ H > CH ₃ CO ₂ H <i>l</i> being (more) electronegative/electron withdrawing (th lises the <u>anion</u> <i>or</i> weakens the O-H bond	an H).	[1] [1] [1] [3]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

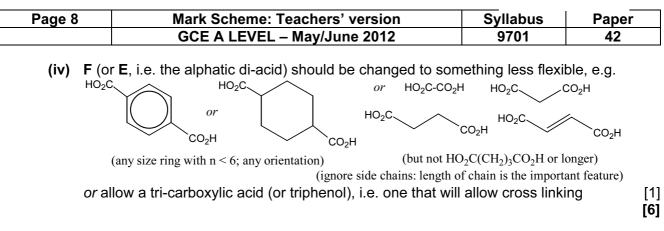
(b)					
first compound	second compound	test	observation with first compound	observation with second compound	
		Br ₂ (aq) [not (I)]	none	decolourises/ white ppt.	
		NaNO ₂ + HC <i>l or</i> HNO ₂ followed by phenol (+ NaOH)	none	yellow/orange/red ppt.	
		AgNO ₃ (aq)	(immediate) white ppt.	none	
CH ₃ CH ₂ COC1	CH₃COCH₂C <i>l</i>	add H ₂ O/ROH	steamy/misty/ white fumes	none	
		(2,4-)DNPH	none	orange ppt.	
		I₂/OH⁻	none	yellow ppt./ antiseptic smell	
		I₂/OH⁻	none	yellow ppt./ antiseptic smell	
		Fehling's/Benedict's solution + warm	red ppt.	none	
CH ₃ CH ₂ CHO	CH ₃ COCH ₃	Tollens' reagent + warm	silver/black ppt.	none	
		$Cr_2O_7^{2-} + H^+ + warm$	turns green	no change	
		$MnO_4^- + H^+ + warm$	decolourises	no change	

three correct reagents three correct positive results three × 'none'

- (c) (i) condensation
 - (ii) (in parts (ii) and (iii), allow structural formulae instead of skeletal formulae) [1] + [1] or NaO HO

(N.B. letters E and F may be reversed.)

(iii) make acyl chloride from F (if not already there)[1]add that to a solution of E in NaOH(aq)[1]


PMT

[3]

[3]

[1] [7]

[1]

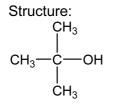
[Total: 16]

PMT

0	

(a))					
	amino acid	structure	type of interaction			
	alanine	H ₂ NCH(CH ₃)CO ₂ H	van der Waals' (NOT hydrophobic)			
	cysteine	H ₂ NCH(CH ₂ SH)CO ₂ H	<u>di</u> sulfide bonds <i>or</i> S-S			
	lysine	H ₂ NCH((CH ₂) ₄ NH ₂)CO ₂ H	ionic/electrovalent hydrogen/H bonds			
	serine	H ₂ NCH(CH ₂ OH)CO ₂ H	hydrogen/H bonds			

[3] **[3]**

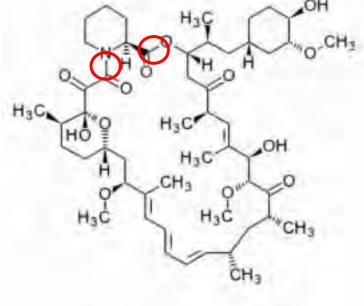

(b)		n – in haemoglobin <i>or</i> red blood cells; transport of oxygen/CO ₂ n myoglobin; transport of oxygen (in muscle)	
		n cytochromes; cell respiration	[1]
	or -	assium – in cell membranes/enzymes; controlling the flow of ions/water into or - in nerves; controlling nerve impulses	
	or -	- Na ⁺ – K ⁺ pump; nerve impulses/control of cell volume/active transport	[1]
		c acting as a <u>cofactor</u> in <u>enzymes</u> (<i>or</i> a named one, e.g. carbonic anhydrase); n making of insulin	[1] [3]
(c)	(i)	$ATP + H_2O \rightarrow ADP + Pi$	[1]
	(ii)	Hydrolysis or nucleophilic substitution	[1] [2]
(d)	(i)	Sodium or chloride (sweat is salty) and Potassium (water retention in cells)	[1]
	(ii)	Hydrogen bonding and reference to water <i>or</i> bonding in mucous molecules	[1] [2]
			[Total: 10]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

- 7 (a) (i) + (ii) any two from:
 - The nature/electronegativity of the atom the proton is attached to *or* is near *or* the electronic/chemical environment of the proton
 - The number/spin states of adjacent protons *or* protons attached to adjacent atoms
 - The (strength of) the applied/external magnetic field
 [1] + [1]
 [2]

(b) (i) Peak at $1.26\delta = (3 \times) CH_3$ or methyl and Peak at $2.0\delta = -O-H$ or alcohol [1]

[1]


(ii)	Isomer	Isomer	Isomer	
	CH ₃ CH ₂ CH ₂ CH ₂ OH	(CH ₃) ₂ CHCH ₂ OH	CH ₃ CH ₂ CH(CH ₃)OH	
	5 groups of peaks	4 groups of peaks	5 groups of peaks	
	structures of any two is correct assignation of n		h stereoisomers of butan-2-ol)	[1] + [1] [1] + [1] [6]

- (c) (i) Phosphorus it has more electrons *or* high electron density (NOT phosphate) [1]
 - (ii) H atoms don't have enough electron density to show up *or* they only contain one e^- [1]

[2]

[Total: 10]

	Page 10		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A LEVEL – May/June 2012	9701	42
8	(a) (i)		ophilic in area C oluble in area B		[1] [1]
	(ii)		region would be exposed to the atmosphere/water/en: attach to at A	zymes <i>or</i> nothing	g the molecule [1] [3]
	(b) (i)	amio	de/peptide <i>or</i> ester		[1]
	(ii)	hydr	olysis		[1]
	(iii)		HIC CH		

[1] + [1] **[4]**

(c) (i) measured in nm, i.e. between 1 and 1000 nm (or $10^{-9} - 10^{-6} \text{ m}$). Any quoted value or range between these limits is acceptable [1]

(ii) One or both of the –OH groups (NOT just 'oxygen' or 'O')

(iii) PEG can H-bond (with water) because it is hydrophilic/contains an OH group/contains lots of oxygen atoms [1]

[3]

[1]

[Total: 10]