UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	2		<u> </u>	lark Sc	heme:	Teacher	s' ver	sion				Syllab	us	Pape	er
			(GCE A	LEVEI	_ – May/J	une 2	011				970	1	42	
1 (a) [H ⁺] pH] = \ = _	(0.05 og₁₀(5	× 5.6 .29 ×	5 × 10 ⁴ 10 ³)) = 5.2 = 2.3	29 × 10 ³ I	mol dr	n ³							[1] [1] [2]
(b) (i)	(Brø equi	nsted libriun	-Lowi n	ry) a	cid-ba	se/proton	transf	er/neı	utral	lisati	on/e	xothe	rmic/re	versible/	[1]
(ii)															
	H Ŧ	•• N •+ н	₽ Н		н			Н ‡	H •• N •+ H	• H		[•• ₽ F ••	•]		
		[1]				[1]	L				[1]			3	3 x [1]
(iii)	(in N cova dativ ionic or be	IH₄F): alent: k ve: bet : betw etwee	oetwe tweer veen n (op	een N 8 n N & H NH₄ ⁺ & positely	k H I F <i>or</i> I ∕ charg	N [⁺] & F <i>or</i> e) ions	ammo	onium	and	d fluc	or <u>ide</u>	<u>e</u> (i.e.	in word	ds)	[1] [1] [1]
(iv)	(rev high low or ai	erse r tempo pressu n incre	eaction eratur ure, b ease i	on, rem re, bec because in partia	nember ause re e revers al pres	r) everse rea se reactio sure/volun	nction n caus ne.	is end ses ar	loth n ind	ermi creas	c se in	no. c	f <u>gase</u>	<u>ous</u> mole	[1] cules [1] [9]
(c) (i)	4NH	₃ + Cւ	: + Sړ	$2O_2 \rightarrow$	[Cu(N	IH ₃) ₄]SO ₄									[1]
(ii)	deej	o/dark	/roya	l blue o	r purpl	e [NOT vi	olet]								[1]
(iii)	dee	o blue	coloi	ur woul	d chan	ge to light	blue	NOT	inte	ensity	of o	colour	decrea	ases]	[1]
	⇒ h <i>or</i> lig	exaqu gand e	ocop xcha	per(II) inge (of	ion <i>or</i> 「NH₃)	Cu(H ₂ O) ₆ by H ₂ O] ²⁺ or [Cu(H	2 0) r	(NH)	3)a n.	²⁺ , wh	iere a :	= 4 or 6	[1] [4]
(d) <u>liga</u> (us	i <u>nd</u> ex e of n	chang amed	je/su ligan	bstitutio ids are	on/disp OK ins	lacement/ stead of 'lig	replac gand'.	emer e.g. "	nt [II 'wat	N W er is	ORD disp	S] blaced	by chl	oride")	[1]
forr bala	nula o anceo	of anic I equa	on (se ition.	e belov e.g.[Cu	w for p ı(H ₂ O)e	ossibilities _}] ²⁺ + nC <i>l</i>	s) → [C	Cu(H ₂	O) ₆	_n Cl _n]	^{2 n} +	∙ nH₂C)		[1] [1]
(All [Cu [Cu	ow n= I(H ₂ O I(H ₂ O	=1 up) ₆] ²⁺ +) ₆] ²⁺ +	to n= 2C <i>l</i> 4C <i>l</i>	6. Also \rightarrow [Cu \rightarrow [Cu	allow u(H ₂ O) uC <i>l</i> 4] ²	[CuC <i>l</i> _n] ^{2 n} ₄C <i>l</i> ₂] + 2H + 6H₂O	as pro ₂ O	duct.	Exa	ampl	es fr	om m	any po	ossible ar	e:
equ [Cu	uation I(H ₂ O	could) ₆] ²⁺ +	inclu 4HC	ude HC $l \rightarrow H_{2}$	<i>l</i> on the ₂CuC <i>l</i> ₄	e LHS, for + 2H ⁺ + 6	exam H₂O	ple: or \rightarrow	Cı	ıC1₄²	+ 4	H⁺ + (6H₂O		[3]
-	-												[Tota	al: 18 ma	x 17]

 (ii) m. pt. trend: (from) giant/macro molecular/covalent to metallic bonding (or implied from at least two specific examples, e.g. diamond and tin) [1] (mention of *simple* covalent anywhere negates this mark)

conductivity trend: increasing delocalisation of electrons (down the group)[1]or e are more free-moving(or implied from at least two examples, e.g. Si is semiconductor, lead has delocalised e)

[6]

(b)	(i)	heat PbO_2 , or $T > 2$	200°C <i>or</i> ∆ on a	arrow: $PbO_2 \rightarrow$	PbO +	1∕₂O₂ (N.B.	1/2O2 NOT	[O])	[1]
-----	-----	---------------------------	------------------------	----------------------------	-------	-------------	-----------	------	-----

(ii)	(burning CO in air produces CO ₂):CO + $\frac{1}{2}O_2 \rightarrow CO_2$ blue flame (ignore ref to limewater test)	[1] [1]
(iii)	e.g. SnC $l_2(aq)$ will turn KMnO ₄ from purple to colourless 5Sn ²⁺ + 2MnO ₄ + 16H ⁺ \rightarrow 5Sn ⁴⁺ + 2Mn ²⁺ + 8H ₂ O	[1] [1]
	or SnC $l_2(aq)$ will turn K ₂ Cr ₂ O ₇ from orange to green 3Sn ²⁺ + Cr ₂ O ₇ ² + 14H ⁺ \rightarrow 3Sn ⁴⁺ + 2Cr ³⁺ + 7H ₂ O	[1] [1]
	or SnC $l_2(aq)$ will turn Fe ³⁺ from orange/brown/yellow to green/colourless Sn ²⁺ + 2Fe ³⁺ \rightarrow Sn ⁴⁺ + 2Fe ²⁺	[1] [1]
	or SnCl ₂ (aq) will turn Cu ²⁺ (aq) from blue to colourless or give a pink/brown/cop coloured ppt. Sn ²⁺ + Cu ²⁺ \rightarrow Sn ⁴⁺ + Cu	per- [1] [1]

Other possible oxidants (E^{e} must be > +0.2V) include: $S_2O_8^2$, H_2O_2 , Cl_2 , Br_2 , I_2 and Ag^{+} . No observations with the first three of these, but this should be stated explicitly, e.g. "no colour change".

[5]

[Total: 11 max 10]

Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2011	9701	42
3 (a) L =	F/e o	rF=Le		[1] [1]
(b) (i)				
		anode A cathode		
	allo	w the conventional symbol $-$ to represent $-$ (the second symbol $-$ (the second symbol) $-$ (the se	he "P.S." is not requir	ed)
	corre amm anoc CuS	ect cell (2 electrodes + PS circuit) neter in series de and cathode of the right polarity [IN WORDS] $O_4(aq)$ or CuC $l_2(aq)$ or Cu ²⁺ (aq) or soln or 1 mol dm ³		[1] [1] [1] [1]
(ii)	n(Cu n(e)	a) = (52.542–52.243)/63.5 = 4.71 × 10 ³ mol (4.67 ×) required = 4.71 × 10 ³ × 2 = 9.42 × 10⁻³ mol (9.34	× 10 ³) × × 10 ³)	[1] ecf [1]
	amo no. c	unt of electricity passed = $0.5 \times 30 \times 60 = 900 \text{ C}$ of electrons passed = $900/1.6 \times 10^{19} = 5.625 \times 10^{21}$		[1] ecf [1]
	no o	f electrons/n(e) = L = $5.625 \times 10^{21}/9.42 \times 10^{3} = 5.97$	7 × 10²³ mol ¹ (6.0	02 × 10 ²³) ecf [1]

(values in italics are if candidate has used $A_r = 64$, not 63.5. No last mark if not 3 s.f.: correct ans = [5]) [9]

(c)

compound	product at anode	product at cathode
AgF	O ₂	Ag
FeSO ₄	O ₂	H ₂
MgBr ₂	Br ₂	H ₂

 $\begin{array}{l} \mbox{6 correct} \Rightarrow \mbox{[5]} \\ \mbox{5 correct} \Rightarrow \mbox{[4] etc.} \end{array}$

Names can be used instead of symbols. If the atomic symbol (e.g. Br or H or O) is used instead of the molecular formula (e.g. Br_2 etc.) then deduct [1] mark only for the whole table.

[5]

[Total: 15]

Page 5	5	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2011	9701	42
4 (a) (i)	(allor	w displayed, structural or skeletal formula)		
	chaiı repe	ຼຼິ າ at unit		[1] [1]
(ii)	C sh	ould be CH ₂ =CHOH (<i>or</i> skeletal formula)		[1]
(iii)	C is	CH₃CH=O (<i>or</i> skeletal formula)		[1]
(iv)	e.g. oran (<i>or</i> c <i>or</i> H	add (2,4-)DNPH <i>or</i> DNP <i>or</i> Brady's reagent ge <i>or</i> red ppt forms (NOT yellow) ould use Fehling's or Tollens', ^t + Cr ₂ O ₇ ² : orange to green, <i>or</i> H ⁺ + MnO ₄ : purple to col	ourless)	ecf [1] ecf [1]
				[6]

(b) (i) (allow displayed, structural or skeletal formula)

D correct repeat unit bracketed (any 3 atoms in chain)

(ii) ester

[1]

[1]

- (iii) **E** is CH₃CH₂CH(OH)CO₂H (*or* skeletal structure etc.)(2-hydroxybutanoic acid) [1] allow ecf here from the formula of the repeat unit shown in (**b**)(**i**)
- (iv) <u>condensation</u> (polymerisation)
- (v) they have the same "molecular" formula or C₄H₆O₂ (do NOT allow empirical formula) or same no. and type of atoms or same functional group or both are esters or they are isomers

[5]

[1]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9701	42
(c) (i) opti (ii)	cal isomerism (<i>or</i> chiral)		[1]
(11)	CO ₂ H CO ₂ H		
(lett	F G ers may be reversed)(allow ecf from E , also allow ecf f	or G from F)	[1] + [1]
cis-	trans <i>or</i> geometrical isomerism		[1] [4]
			[Total: 15]

	Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – May/June 2011	9701	42
5	(a) acidity: e due to +v bond) acidity: p due to st	thanol < water ve inductive effect of C_2H_5 group <i>or</i> C_2H_5 gives e to o whenol > water abilisation of the <u>anion/anionic</u> charge <i>or</i> makes the <u>a</u>	oxygen <i>or</i> intensi <u>nion</u> less basic	[1 fies e (in O- I [1 [1 [4

[5]

(c) H is ОН

NO ₂	[1]
reagents & conditions: step 1 dilute HNO ₃ (dilute, not just 'aq'. H ₂ SO ₄ negates)	[1]
step 2 Sn/SnC1 ₂ /Fe + HC1 or H ₂ + Ni/Pd (NOT H ₂ + Pt. NOT LiA1H ₄ or NaBH ₄)	[1]
step 3 CH ₃ COC <i>l or</i> (CH ₃ CO) ₂ O ('aq.' negates)	[1] [4]

[Total: 13]

Pag	ge 8	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE A LEVEL – May/June 2011	9701	42	
(a)	They a	re polar/ionic <i>or</i> can hydrogen-bond <i>or</i> are hydrophilic.			[1
					[1
(b)	(i) Pr Se Te	imary structure is the <u>sequence/order</u> of <u>amino acids</u> econdary structure is the H-bonding between C=O & N-H ertiary structure gives the (overall) 3D structure/shape/fol- ect 'coiling' on its own)	<i>or</i> peptide grou ding/globularity	ıp/bonds	[^ [^
	or be	mention of at least one method of forming the 3° stru tween R-groups/side chains ; –S-S- bridges; van der V	cture, e.g.; hyd Vaals forces; iol	rogen bond nic interactio	lin on [
	(ii) Th or or	e 3° structure provides a complementary shape to that c it provides the right/specifically shaped cavity for the <u>sub</u> provides nearby groups to aid the reactions of the <u>substr</u>	of the <u>substrate</u> <u>ostrate</u> . (NOT ju <u>rate</u> (owtte)	st 'a cleft')	[′
((iii) Tv (a (b (c (d (e Su (i)	 vo conditions out of the following: Increased temperature Decreased temperature Change in pH Addition of heavy metals (<i>or</i> specified, e.g. Hg/Ag) Addition of inhibitors (competitive or non-competitive) itable reasons: 3D structure changes shape/is deformed/is broken <i>or</i> example, e.g. H-bonding) are broken 	R-R interaction	s (or a spec	cifi

(iii) *either* fewer substrate molecules with $E > E_a$ or fewer successful collisions

[2] **[6]**

left hand peak labelled as pepsin right hand peak labelled as trypsin (Correct enzymes, but wrong way round, scores [1] only)

(ii) Peak between pH 6 and pH 8, and correct name (amylase)

[1] **[3]**

[1] [1]

[Total: 10]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9701	42

7 (a)

Number	Process	Correct sequence (numbers)
Α	Place samples on agarose gel	4
В	Use polymerase chain reaction	3
С	Label with radioactive isotope	6
D	Extract DNA	1
E	Use restriction enzyme	2
F	Carry out electrophoresis	5

mark as follows:	if A is just before F (i.e. A = 4, F = 5 <i>or</i> A = 5, F = 6)	[1] mark
	if D = 1 and E = 2	[1] mark
	if C = 6	[1] mark
		[3]

(b) (i) P *or* phosphorus (NOT phosphate)

(ii) Phosphate groups are present in DNA *or* it makes the DNA fragments/bands etc. visible *or* locates their position *or* identifies them on a photographic plate etc. [1] (NOT because it's radioactive *or* makes the bands coloured)
 [2]

(c) (i) Yes, all 4 children share one/some band (or match/gene/fragment/part/DNA/ amino acid) with the mother's (DNA) (NOT the general statement "matches the mother's DNA")

- (ii) Child 2, since he/she shares none of the bands of father's DNA/fingerprint or their fingerprint/DNA does not match the father's DNA (the general "match" is OK here) [1]
 [2]
- (d) (i) Compare DNA fingerprint for each fragment (can be read into use of the word 'same' below) [1]
 Match the DNA patterns to determine which came from which skin [1]
 - (ii) A named example of biological origin (N.B. a material, not a whole organism) [1]
 e.g. leather (= bull skin), pollen, fish scales, leaves, seeds, feathers, hair, blood, textiles (or a named one like wool or silk or cotton or linen/flax), wood.

(N.B. NOT human or goat skin, also not metal, pottery or stone. If more than one material is given, mark the first one)

[3]

[1]

[Total: 10]

$D\Lambda T$	
1 1711	

	Page 10		0	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE A LEVEL – May/June 2011	9701	42
8	(a)	Rai to 1	nge sl I0 ⁸ –1	hould be from 10 6 –10 7 (the left hand arrow) 0 9 (the right hand arrow)		[1] [1] [2]
	(b)	For with allo neg	orms of the same element (<i>or</i> of carbon , since carbon is the context of the question) ith different structures/arrangements of atoms llow 'different molecular structure', but not structural formula. Any mention of 'compou egates the mark.			
	(c)) Nanoparticles are smaller than (animal) cells or they can pass through the cell membrane or pass into/between cells Drugs can be bound to/enclosed by the nanoparticle				membrane [1] [2]
	(d)	(i)	Red	uction/redox		[1]
		(ii)	<i>M</i> r o Mas	f chalcopyrite is 63.5 + 56 + 64 = 183.5 s of copper present is 63.5		
			Hen (if A _r	ce percentage of copper present = $\frac{63.5 \times 100}{183.5}$ = 34.6% (Cu) = 64 is used, ans = 34.8 %. allow 34–35 %)	6	[1]
	(iii)		lf the from	e ore contains 2% of chalcopyrite by mass, calculate each tonne of ore.	how much copp	er is produced
			1 tor 1 tor 1 tor (acc answ are t	nne = 1000 kg nne of chalcopyrite would produce 346 kg of copper nne of 2 % ore would produce 346 × 0.02 or 6.9 kg of c ept 7.0 or 7 kg) ver may be given as 7000 g or 7 × 10 ³ tonnes. If no onnes, and mark accordingly)	copper ecf from units are given	(d)(ii) [1] , assume they

(iv) By displacement with a metal (the following specified metals higher than Cu in the ECS may be used: Fe, Zn, Sn, Pb, A*l*, Mg. (NOT Ca, Li, Na. K etc.) *or* with a suitable non-metallic reducing agent, e.g. SO₂ or Sn²⁺, but not something that wouldn't react, like H₂ *or* By electrolysis (with carefully controlled voltage)

[4]

[Total: 10]