UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Syllabus 9701 Paper 43

[2]

[7]

[3]

(a) C ₆ H	H_5 -COCH ₂ OH or C ₈ H_8O_2 and NaCl or Cl	(1) + (1)
(b) (i)	the exponent / power to which a concentration is raised in the rate equation (or in an equation, e.g. " ^a " in the equ: rate = $k[A]^a$)	ו (1)
(ii)	from 1 and 2: rate increases by 50% as does [RC l], so rate \propto [RC l] ¹ from 1 and 3: rate \propto [NaOH] ¹	(1) (1)
(iii)	(rate =) k[RC1][OH]	(1)
(iv)	(can be a solid line)	
	(can be a solid line) (can be a solid line)	(1) te
(c) (i)	(add RC1 / RCOC1 to) (aq) Ag ⁺ / AgNO ₃ or named indicator (e.g. MeOr) use pH probe	or (1)
	White ppt appears (faster with RCOC <i>l</i>) <i>or</i> turns acidic colour (e.g. red) shows pH decrease	or (1)
	if water is the only reagent, and no pH meter used: award only the secor mark, for "steamy / white fumes"	nd
(ii)	(C=O is polarised /) carbon is more δ + than in R-C <i>l</i> or carbon is positive RCOC <i>l</i> can react via addition-elimination (montion of electronogativity on its own is not enough for the mark)	
	(mention of electronegativity on its own is not enough for the mark)	(1) otal: 12]
		nai. 12j

Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010

Page 2

1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2010	9701	43	
(a) less	s soluble down group		(1)	
latt	ce energy and hydration energies both decrease (i.e. become	e less negative)	(1)	
but	H.E. decreases more (than L.E.) or change in H.E. outweighs	s L.E.	(1)	
SO .	ΔH_{sol} becomes more endothermic / less exothermic		(1)	[4]
(b) (i)	for Mg: Δ H = 2993 – 1890 – (2 × 550) = (+)3 (kJ mol ⁻¹)		(1)	
	for Sr: $\Delta H = 2467 - 1414 - (2 \times 550) = -47$ (kJ mol ⁻¹)		(1)	
(ii)	$\mbox{Sr}(\mbox{OH})_2$ should be \mbox{more} soluble in water, and $\mbox{\Delta}\mbox{H}$ is measured	ore exothermic	/ (1)	
	Assuming "other factors" (e.g. ΔS , or temperature etc.) are the	ne same	(1)	
(iii)	$Sr(OH)_2$ should be less soluble in hot water, because a exothermic	∆H is negative	/ (1)	[5]
(c) (i)	$K_{sp} = [Ca^{2+}][OH]^2$ (needs the charges) units: mol ³ dm ⁹	(*	1) + (1)	
(ii)	$n(H^{+}) = n(OH) = 0.05 \times 21/1000 = 1.05 \times 10^{-3} \text{ mol in } 25 \text{ cm}^{-3}$	3		
	[OH] = $1.05 \times 1000/25 = 4.2 \times 10^{-2} \text{ (mol dm}^{-3}\text{)}$		(1)	
	[Ca ²⁺] = 2.1 × 10⁻² (mol dm ³)		(1)	
	$K_{sp} = 2.1 \times 10^{-2} \times (4.2 \times 10^{-2})^2 = 3.7 \times 10^{-5}$		(1)	
(iii)	less soluble in NaOH due to the common ion effect <i>or</i> equ to the l.h.s. by high [OH] (NOT just a mention of Le Chat ^r or		d (1)	[6]
			[Total:	15]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	43

3 (a) SiF₄ is symmetrical *or* tetrahedral *or* bonds are at 109° *or* has no lone pair *or* 4 electron pairs shared equally *or* all Si-F dipoles cancel out, *or* SF₄ has a lone pair (on S).

(b)

compound	molecule has an overall dipole	molecule does not have an overall dipole
BC1 ₃		\checkmark
PC1 ₃	\checkmark	
CCl_4		\checkmark
SF_6		✓

mark row-by-row,

- (c) (i) Si and B have empty / available / low-lying orbitals or C does not have available orbitals (allow "B is electron deficient" but not mention or implication of d-orbital on B)
 - (ii) $BCl_3 + 3H_2O \rightarrow H_3BO_3 + 3HCl \text{ or } 2BCl_3 + 3H_2O \rightarrow B_2O_3 + 6HCl$ (1)

$$SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl etc., e.g. \rightarrow Si(OH)_4, H_2SiO_3$$
(1) [3]

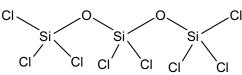
(d) (i)
$$Si_3Cl_8O_2$$
 (this has $M_r = 84 + 280 + 32 = 396$) or $Si4Cl_4O_9$ or $Si_8Cl_4O_2$ (1)

(ii)

mass number	structure
133	Cl₃Si
247	Cl_3 Si-O-Si Cl_2
263	Cl ₃ Si-O-SiCl ₂ -O

(3)

(1)


(2)

[1]

[2]

(if correct structures are **not** given for last 2 rows, you can award (1) mark for **two** correct molecular formulae: either $Si_2Cl_5O + Si_2Cl_5O_2$ or $Si_3ClO_8 + Si_3ClO_9$ or $Si_7ClO + Si_7ClO_2$)

(iii)

allow ecf on the structure drawn in the third row of the table in **(ii)** but any credited structure must show correct valencies for Si, Cl and O. (1) [5]

[Total: 11]

PMT

Page 5	Mark Scheme: Teachers'	version Syllabus	Paper
	GCE AS/A LEVEL – May/J	une 2010 9701	43
Mn ²⁺ :	1s ² 2s ² 2p ⁶ 3s²3p⁶3d³ 1s ² 2s ² 2p ⁶ 3s²3p⁶3d⁵) out of (2) for 3s ² 3p ⁶ 4s ² 3d ¹ and 3s ² 3	3p ⁶ 4s ² 3d ³)	(1) (1)
•	three of the following points: initial (pale) green (solution) fades to (almost) colourless (allow y then (permanent faint) pink finally (deep) purple	ellow)	(3)
(ii) MnC	$D_4 + 8H^+ + 5Fe^{2+} (+ 5e) \rightarrow Mn^{2+} + 6H^{2+} (+ 5e)$	4H ₂ O + 5Fe ³⁺ (+ 5e)	(1)
(c) E ^e values	S: $O_2 + 4H^+/2H_2O = +1.23V$ Fe $O_2 + 2H_2O/4OH = +0.40V$ Fe	e ³⁺ /Fe ²⁺ = +0.77 V e(OH) ₃ /Fe(OH) ₂ = –0.56V	(2)
E ^e _{cell} = +	0.46V (allow –0.37) in acid, but +0.9	6V in alkali <i>or</i> E ^e (OH)> E ^e (H	⁺) (1)
If E ic	more positive it means a greater like	libeed of receiver	(1)

(d) (1) CH₃CO₂H (1) and HO₂C (1) CO₂H (or CO₂H) 0 ·CO₂H сно or H₃C H₃Ć (1) (1)

[5]

- (e) (i) $(CH_3)_2C(OH)-CH_2OH$
 - (ii) reaction I: (cold dilute) KMnO₄ ("cold" not needed, but "hot" or "warm" negates) reaction II: $Cr_2O_7^2 + H^+ + distil$ (1) (1) [3]

(1)

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper				
			GCE AS/A LEVEL – May/June 2010	9701	43				
5	(a) (i	•	because the carbons are sp² / trigonal planar / bonded at 120° \textit{or} are joine by π bonds / orbitals						
	(ii		ause the $\underline{\pi}$ electrons / double bonds are delocalised strons are evenly distributed / spread out	/ in resonance o	or (1)	[2]			
	(b) (i		$D_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4$ $HO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4 or \rightarrow H_2O + NO_2^+$	⁺ + HSO₄	(1)				
	(ii		ctrophilic substitution chanism:		(1)				
			NO_2^+						
			y arrows from benzene to NO ₂ ⁺ , and showing loss of H ect intermediate (with "+" in the 'horse-shoe')	+	(1) (1)	[4]			
	(c) C	:l ₂ + Ai	Cl_3 / FeC l_3 / Fe / A l / I ₂ (aq or light negates this mark)		(1)	[1]			
	(d) (i	i) Yis	chlorobenzene (1) Z is 4-chloronitrobenzene (1)		(2)				
	(ii	i) Sn	/ Fe + (conc) HCl		(1)				
		HC	<i>l</i> is conc , and second step is to add NaOH(aq)		(1)				
	(iii)								

(4) [8]

PMT

	Page 7		Mark Scheme: Teachers' version	Syllabus	Papar	1
	raye i		GCE AS/A LEVEL – May/June 2010	Syllabus 9701	Paper 43	
6	(a) (i) (ii)	or di or ai	hary – the amino acid sequence / order / chain hag. e.g. NH-C-CO-NH-C-CO mino acids bonded by covalent / amide / peptide bonds hary – the coiling / folding of the protein / polypep	3	(1) o	
			ractions between side-chains on the amino acids <i>or</i> t s the protein its 3-D / globular shape	he structure whic	h (1)	[2]
	(b) (i)	-	ram: mum is CH ₂ S-SCH ₂		(1)	
	(ii)	Oxic	lation / dehydrogenation / redox		(1)	
	(iii)	van	rogen / H bonds; ionic interactions / bonds <i>or</i> ion-dipole der Waals' <i>or</i> id-id <i>or</i> induced / instantaneous dipole fo pre hydrophobic interactions)		(2)	[4]
	(c) (i)	Hyd	rogen bonds		(1)	
	(ii)	Diag an e.g.	rect new strand present (see below) gram showing C=O bonding to N-H in new strand d N-H bonding to C=O in new strand		е	
		chai	v strand must contain a minimum of two amino acid read to a penalty of –(1) for any wrong H-bond only ady been scored.			[3]

(d) There are bonds *or* S-S bridges / linkages between the layers / sheets (in β-keratin) (but only van der Waals interactions between the layers in silk)
(1) [1]

[Total: 10]

Page 8		Ν	lark Scheme: Teacher	s' version	Syllabus	Paper			
		G	CE AS/A LEVEL – May	/June 2010	9701	43			
(a)	equal (N	The amino acid is uncharged / neutral / a zwitterion <i>or</i> charges balance / a equal (NOT "is non-polar") It is equally attracted by the anode / + and the cathode / – <i>or</i> attracted by neither							
		-	r is at the isoelectric po		-	(2)	[2]		
(b)	(at pH 10), H ₂ NCH ₂	CO ₂ or NH ₂ CH ₂ COO			(1)	[1]		
(c)									
	amino	acid	relative size	charge					
	A	1	small(est) (1)	–ve					
	E	3	large(st) (3)	-ve					
	C	;	middle (2)	+ve					
	(numbers	s are OK to	o show relative sizes)						
	Mark eac	h row				(3)	[3]		
	Mark out					(0)	[0]		
(d)	(i) lys –	val – ser	– ala – gly – ala – gly –	asp		(2)			
	(ii) gly-	ala – gly				(1)			
	(iii) aspa	rtic acid (d	or lysine)			(1)	[4]		
						[Total:	: 10]		

	Pa	ige 9)	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2010	9701	43	
8	(a)	Rea exte	om (1)	[1]			
	(b)		$\begin{array}{ll} (Pb^{2^{+}}+2e \rightarrow Pb) & E^{e}=-0.13V \\ (PbO_{2}+4H^{+}+2e \rightarrow Pb^{2^{+}}+2H_{2}O) & E^{e}=+1.47V \\ & \textit{two correct } E^{e} \textit{ values} \end{array}$				
		Cel	l volta	age is 1.6(0) (V)		(1)	[2]
	(c)	(i)	3(+)			(1)	
		(ii)	(ii) They are less heavy / poisonous / toxic / polluting or are safer due to (conc) H ₂ SO ₄ within them				[2]
	(d)	(i)	Plati	num or graphite / carbon		(1)	
		(ii)	hydr	/ need large quantities of compressed gases which t ogen would need to be liquefied or the reactant is (osive / combustible			[2]
	(e)	Gla	SS:	saves energy – the raw materials are easily access <i>or</i> making glass is energy-intensive	ible / cheap	(1)	
		Steel:		saves energy – extracting iron from the ore <i>or</i> mining the ore is energy intensive <i>or</i> saves a resource – iron ore (NOT just "iron") is b	•	r one (1)	
		Pla	stics:	saves a valuable / scarce resource : (crude) oil / pe	troleum	(1)	[3]
			[Total:	10]			

PMT