Cambridge International AS & A Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY 9701/02 Paper 2 AS Level Structured Questions For examination from 2022 SPECIMEN PAPER 1 hour 15 minutes You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### INFORMATION - The total mark for this paper is 60. - The number of marks for each question or part question is shown in brackets []. This document has 18 pages. Blank pages are indicated. © UCLES 2019 [Turn over - 1 The properties of elements and their compounds show similarities, differences and trends depending on the positions of the elements in the Periodic Table. - (a) The positions of some elements are shown. Fig. 1.1 | (i) | Using Fig. 1.1 identify the element that forms a soluble hydroxide and an insoluble sulfate. | |-------|---| | | [1] | | (ii) | Using Fig. 1.1 identify the most volatile element in a group that contains elements in all three states of matter at room temperature and pressure. | | | [1] | | (iii) | Using Fig. 1.1 identify the element that forms the largest cation. | | | [1] | **(b)** Fig. 1.2 shows the relative first ionisation energies of six successive elements in the Periodic Table. The letters are **not** the symbols of the elements. Fig. 1.2 | (1) | Define first ionisation energy. | | |------|--|----| | | | | | | | | | | | | | | | [2 | | (ii) | Suggest why the first ionisation energy of B is much less than that of A in Fig 1.2. | ſΩ | (c) (i) On Fig. 1.3, sketch a graph to show the trend in the atomic radius of successive elements in Period 3. Fig. 1.3 | | | [1] | |------|--------------------------------|-------| | (ii) | Explain your answer to (c)(i). | [3] | | | [Total | : 121 | | | [.000. |] | 2 | Cai | rbon | and silicon are elements in Group 14. | | | | | |-----|------|---|-------|--|--|--| | (a) | (i) | Describe in simple terms the structure of solid C_{60} . | | | | | | | | | | | | | | | (ii) | C ₆₀ sublimes (turns directly from solid to gas) at approximately 800 K. | | | | | | | | $C_{60}(s) \rightarrow C_{60}(g)$ | | | | | | | | Diamond also sublimes but only above 3800 K. | | | | | | | | $C_{diamond}(s) \rightarrow C(g)$ | | | | | | | | Explain why C ₆₀ and diamond sublime at such different temperatures. | . [4] | | | | | | | | | | | | | (b) | | forms hydrocarbons with similar chemical properties to those of alkenes. One strocarbon is $\rm C_{60}H_{18}$. | uch | | | | | | (i) | Define hydrocarbon. | | | | | | | | | | | | | | | | | [1 | | | | | | (ii) | ${ m C_{60}H_{18}}$ is an alkene. State a test to indicate the presence of double bonds between carbon atoms in alkene molecules. | |-----|--------------|--| | | | [1] | | | (iii) | State the observations seen when the test in (b)(ii) is carried out on an alkene. | | | | [1] | | (c) | 0.14
a pr | 4 g of 60 is placed in a 100 cm 3 container of hydrogen gas at a temperature of 20 °C and essure of 1.00 $ imes$ 10 5 Pa. | | | | container is heated to make the $\rm C_{60}$ and hydrogen gas react. The reaction occurs as wn in the equation. | | | | $C_{60}(s) + xH_2(g) \rightarrow C_{60}H_{2x}(s)$ | | | | r the reaction, the container is allowed to cool to 20 $^{\circ}\text{C}.$ The pressure decreases to $\times10^4\text{Pa}.$ All of the C_{60} has reacted. | | | (i) | Name the type of reaction that occurs. | | | | [1] | | | (ii) | Calculate the amount, in moles, of C ₆₀ that reacts. | | | | | | | | amount of C ₆₀ = mol [1] | | | (iii) | Calculate the amount, in moles, of hydrogen gas that reacted with the $\mathrm{C}_{60}.$ Show your working. | | | | | | | | amount of hydrogen gas = mol [3] | | | (iv) | Use your answers from (c)(ii) and (c)(iii) to deduce the molecular formula of the hydrocarbon, $\rm C_{60}H_{2x}$. | |-----|-------|--| | | | (If you were unable to calculate the amount of hydrogen gas, assume that 0.00240 mol of hydrogen gas reacts. This is not the correct value.) Show your working. | | | | | | | | molecular formula =[2] | | (d) | Silio | con shows the same type of bonding and structure as diamond. | | | Silio | con reacts with magnesium to form Mg ₂ Si. | | | | d ${\rm Mg_2Si}$ reacts with dilute hydrochloric acid to form gaseous ${\rm SiH_4}$ and a solution of gnesium chloride. | | | (i) | Construct an equation for this reaction. Include state symbols. | | | | [2] | | | (ii) | Predict the shape of the SiH ₄ molecule. | | | | [1] | | | | [Total: 19] | | | | | 3 | Call | Ciuiii | and its compounds have a large variety of applications. | |------|--------|--| | (a) | Cal | cium metal reacts readily with most acids. | | | Whe | en calcium metal is placed in dilute sulfuric acid, it reacts vigorously at first. | | | | er a short time, a layer of calcium sulfate forms on the calcium metal and the reaction os. Some of the calcium metal and dilute sulfuric acid remain unreacted. | | | Sug | gest an explanation for these observations. | | | | | | | | [1] | | (b) | | cium ethanedioate is formed when calcium reacts with ethanedioic acid, HOOCCOOH. | | | (i) | State the full electronic configuration of the cation in calcium ethanedioate. | | | | [1] | | | (ii) | Deduce the charge on the cation. | | | | [1] | | | (iii) | Draw the fully displayed formula of ethanedioic acid. | | | | | | | | | [1] | (c) | | cium chlorate(I), $Ca(ClO)_2$, is used as an alternative to sodium chlorate(I), $NaClO$, ne household products. | in | |-----|-------|---|-----| | | (i) | The chlorate(I) ion is formed when cold aqueous sodium hydroxide reacts with chloring | Э. | | | | Write an ionic equation for this reaction. State symbols are not required. | | | | | [| 1] | | | (ii) | The chlorate(I) ion is unstable and decomposes when heated as shown. | | | | | $3ClO^- \rightarrow 2Cl^- + ClO_3^-$ | | | | | This reaction can be described as a disproportionation reaction. | | | | | Describe what is meant by disproportionation reaction. | | | | | | | | | | [| 1] | | | (iii) | Deduce the oxidation number of chlorine in each species for the equation in (c)(ii). | | | | | Complete the boxes. | | | | | $3ClO^- \rightarrow 2Cl^- + ClO_3^-$ | | | | | oxidation number of chlorine +1 | | | | | — — — — [| [1] | [4] (d) Calcium carbonate reacts with 2-hydroxypropanoic acid to form product Y. 2-hydroxypropanoic acid Υ Fig. 3.1 (i) Identify the **two** other products of the reaction of 2-hydroxypropanoic acid with calcium carbonate.[1] Two possible methods of making 2-hydroxypropanoic acid are shown in Fig. 3.2. Fig. 3.2 (ii) State suitable reagents and conditions for reactions 1 and 3. | reaction 1 | | |------------|--| | reaction 3 | | (iii) Deduce the type of reaction that occurs in reaction 2. (iv) The reagent for reaction 4 is NaBH₄. Identify the role of NaBH₄ in this reaction. | (v) | 2-hydroxypropanoic acid has a chiral centre. | |-----|--| | | State what is meant by chiral centre. | | | | | | | | | [1] | | | [Total: 15] | 4 A reaction scheme involving cyclohexane is shown in Fig. 4.1. Fig. 4.1 Reaction 1 involves a free radical substitution mechanism. (a) State the essential condition required for reaction 1 to occur. [1] **(b)** Complete Table 4.1 to give details of the mechanism in reaction **1**. Include curly arrows to show the movement of electrons occurring in the termination step. Table 4.1 | name of step | equation | |--------------|-------------------------| | | Cl₂ → 2Cl• | | propagation | + Cl• + | | | + Cl ₂ + Cl• | | termination | | [5] (c) Deduce the type of reaction that occurs in reaction 2.[1] (d) Hex-3-ene is an isomer of cyclohexane. Hex-3-ene can be converted into propanoic acid. | reaction 3 hex-3-ene | |--| | Deduce the reagents and conditions for reaction 3. | | [2] | | [Total: 9] | [2] 5 Compound **X** contains atoms of carbon, hydrogen and oxygen only. The mass spectrum of \mathbf{X} is recorded. Information about the two peaks with m/e greater than 100 is shown in Fig. 5.1. Fig. 5.1 (a) A molecule of X contains 6 carbon atoms. Demonstrate that this is correct using information from Fig 5.1. Show your working. (b) Suggest the molecular formula of X using information from Fig. 5.1. (c) Suggest the molecular formula of the fragment of X at m/e = 31. [1] ## (d) Fig 5.2 shows the infra-red spectrum of X. Fig. 5.2 Table 5.1 | bond | functional group containing the bond | characteristic infra-red absorption range (in wavenumbers) / cm ⁻¹ | | | | |------|--------------------------------------|---|--|--|--| | C-O | hydroxy, ester | 1040–1300 | | | | | C=C | aromatic compound, alkene | 1500–1680 | | | | | C=O | amide
carbonyl, carboxyl
ester | 1640–1690
1670–1740
1710–1750 | | | | | C≡N | nitrile | 2200–2250 | | | | | C–H | alkane | 2850–3100 | | | | | N–H | amine, amide | 3300–3500 | | | | | О–Н | carboxyl
hydroxy | 2500–3000
3200–3650 | | | | | dentify the functional group present in X using your answer in (b) and information fig. 5.2 and Table 5.1. Give a reason for your answer. | | |---|--------| | | | | lTota | al: 51 | 16 ### **BLANK PAGE** 17 ## Important values, constants and standards | molar gas constant | $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ | |---------------------------------|---| | Faraday constant | $F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$ | | Avogadro constant | $L = 6.022 \times 10^{23} \text{mol}^{-1}$ | | electronic charge | $e = -1.60 \times 10^{-19} \mathrm{C}$ | | molar volume of gas | $V_{\rm m} = 22.4 {\rm dm}^3 {\rm mol}^{-1}$ at s.t.p. (101 kPa and 273 K)
$V_{\rm m} = 24.0 {\rm dm}^3 {\rm mol}^{-1}$ at room conditions | | ionic product of water | $K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 ^{\circ}C))$ | | specific heat capacity of water | $c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1} (4.18 \text{ J g}^{-1} \text{ K}^{-1})$ | P F 19.0 Librarine 119.0 Libra 17 16 5 4 B B 113 A1 10.8 10.0 10. 33 29 Cu copper 63.5 Ag silver 107.9 Au gold 197.0 111 The Periodic Table of Elements Group ± **1** 1.0 7 25 26.9 Mn S43 43 TC chnetium 77 78 Re mentium 1186.2 107 Bh bohrium atomic number atomic symbol name 22 Ti Ti titanium 47.9 40 Zr Ar.9 91.2 72 Hf Hafnium 178.5 104 RRf 3 21 21 8C candium 45.0 39 Yetrium 941.0 98.9 57-71 nthanoids α | | | | | | | \neg | | |----|---------|-----------------------|-----|-----------|--------------|--------|--| | 71 | <u></u> | lutetium
175.0 | 103 | בֿ | lawrencium | ı | | | 70 | Υp | ytterbium
173.1 | 102 | å | nobelium | 1 | | | 69 | H | thulium
168.9 | 101 | Md | mendelevium | ı | | | 89 | ш | erbium
167.3 | 100 | Fm | fermium | 1 | | | 29 | 운 | holmium
164.9 | 66 | Es | einsteinium | ı | | | 99 | ò | dysprosium
162.5 | 86 | ರ | californium | ı | | | 65 | Р | terbium
158.9 | 26 | ă | berkelium | ı | | | 64 | gg | gadolinium
157.3 | 96 | Cm | curium | ı | | | 63 | П | europium
152.0 | 92 | Am | americium | ı | | | 62 | Sm | samarium
150.4 | 94 | Pu | plutonium | 1 | | | 61 | Pm | promethium
— | 93 | ď | neptunium | ı | | | 09 | P | neodymium
144.4 | 92 | \supset | uranium | 238.0 | | | 59 | ሷ | praseodymium
140.9 | 91 | Ра | protactinium | 231.0 | | | 58 | o | cerium
140.1 | 06 | Ļ | thorium | 232.0 | | | 22 | Га | lanthanum
138.9 | 89 | Ac | actinium | ı | | anthanoids actinoids Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.