



# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education

Advanced Subsidiary Level and Advanced Level

| CANDIDATE<br>NAME |                     |  |
|-------------------|---------------------|--|
| CENTRE<br>NUMBER  | CANDIDATE<br>NUMBER |  |

**CHEMISTRY** 

Paper 2 Structured Questions AS Core

9701/23 May/June 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: **Data Booklet** 

#### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |  |  |  |  |
|--------------------|--|--|--|--|--|
| 1                  |  |  |  |  |  |
| 2                  |  |  |  |  |  |
| 3                  |  |  |  |  |  |
| 4                  |  |  |  |  |  |
| 5                  |  |  |  |  |  |
| Total              |  |  |  |  |  |

This document consists of 11 printed pages and 1 blank page.



## Answer all the questions in the spaces provided.

For Examiner's Use

[3]

| 1 | Carbon disulfide, CS <sub>2</sub> , is a volatile, flammable liquid which is produced in small quantities in volcanoes. |                                                                                                |     |  |  |  |
|---|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----|--|--|--|
|   | (a) Th                                                                                                                  | ne sequence of atoms in the CS <sub>2</sub> molecule is sulfur to carbon to sulfur.            |     |  |  |  |
|   | (i)                                                                                                                     | Draw a 'dot-and-cross' diagram of the carbon disulfide molecule.<br>Show outer electrons only. |     |  |  |  |
|   |                                                                                                                         |                                                                                                |     |  |  |  |
|   |                                                                                                                         |                                                                                                |     |  |  |  |
|   | (ii)                                                                                                                    | Suggest the shape of the molecule and state the bond angle.                                    |     |  |  |  |
|   |                                                                                                                         | shape                                                                                          |     |  |  |  |
|   |                                                                                                                         | bond angle                                                                                     | [3] |  |  |  |
|   | <b>(b)</b> C:                                                                                                           | arbon disulfide is readily combusted to give $CO_2$ and $SO_2$ .                               |     |  |  |  |
|   | (i)                                                                                                                     | Construct a balanced equation for the complete combustion of CS <sub>2</sub> .                 |     |  |  |  |
|   |                                                                                                                         |                                                                                                |     |  |  |  |
|   | (ii)                                                                                                                    | ) Define the term standard enthalpy change of combustion, $\Delta H_c^e$ .                     |     |  |  |  |

| (c) |      | culate the standard enthalpy change of formation of ${\rm CS_2}$ from the following data. ude a sign in your answer.      | For<br>Examiner's<br>Use |
|-----|------|---------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     | star | ndard enthalpy change of combustion of $CS_2 = -1110 \text{kJ} \text{mol}^{-1}$                                           |                          |
|     | star | ndard enthalpy change of formation of $CO_2 = -395 \mathrm{kJ} \mathrm{mol}^{-1}$                                         |                          |
|     | staı | ndard enthalpy change of formation of SO <sub>2</sub> = -298 kJ mol <sup>-1</sup>                                         |                          |
|     |      |                                                                                                                           |                          |
|     |      |                                                                                                                           |                          |
|     |      |                                                                                                                           |                          |
|     |      |                                                                                                                           |                          |
|     |      |                                                                                                                           |                          |
|     |      |                                                                                                                           |                          |
|     |      |                                                                                                                           |                          |
|     |      |                                                                                                                           |                          |
|     |      | [3]                                                                                                                       |                          |
| (d) |      | bon disulfide reacts with nitrogen monoxide, NO, in a 1:2 molar ratio. ellow solid and two colourless gases are produced. |                          |
|     | (i)  | Construct a balanced equation for the reaction.                                                                           |                          |
|     |      |                                                                                                                           |                          |
|     | /::\ | What is the change in the evidation number of cultur in this reaction?                                                    |                          |
|     | (ii) | What is the change in the oxidation number of sulfur in this reaction?                                                    |                          |
|     |      | from to                                                                                                                   |                          |
|     |      | [Total: 12]                                                                                                               |                          |
|     |      |                                                                                                                           |                          |
|     |      |                                                                                                                           |                          |
|     |      |                                                                                                                           |                          |

| 2 | Methanol, CH <sub>3</sub> OH, hydrogen, H <sub>2</sub> . | can be   | produced            | industrially | by | reacting | carbon    | monoxide,        | CO, | with |
|---|----------------------------------------------------------|----------|---------------------|--------------|----|----------|-----------|------------------|-----|------|
|   | CO(c                                                     | ı) + 2H. | (a) <del>←</del> C⊦ | H.OH(a)      |    | ΛH = -   | -91 k.l m | ∩l <sup>–1</sup> |     |      |

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$   $\Delta H = -91 \text{ kJ mol}^{-1}$ 

| The | e pro | cess is carried out at $4 \times 10^3$ kPa (40 atmospheres) and 1150 K.                                                                                                                                                                                  |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) | (i)   | State Le Chatelier's Principle.                                                                                                                                                                                                                          |
|     |       |                                                                                                                                                                                                                                                          |
|     |       |                                                                                                                                                                                                                                                          |
|     |       | [2]                                                                                                                                                                                                                                                      |
|     | (ii)  | From your understanding of Le Chatelier's Principle, state the conditions of temperature and pressure that could be used in order to produce an increased yield of methanol in this process.  In <b>each</b> case, explain why the yield would increase. |
|     |       | temperature                                                                                                                                                                                                                                              |
|     |       | explanation                                                                                                                                                                                                                                              |
|     |       |                                                                                                                                                                                                                                                          |
|     |       | pressure                                                                                                                                                                                                                                                 |
|     |       | explanation                                                                                                                                                                                                                                              |
|     |       | [4]                                                                                                                                                                                                                                                      |

**(b)** The carbon monoxide for use in the production of methanol may be formed by reacting carbon dioxide with hydrogen.

For Examiner's Use

$$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$$
  $K_c = 1.44 \text{ at } 1200 \text{ K}$ 

A mixture containing 0.70 mol of  $CO_2$ , 0.70 mol of  $H_2$ , 0.30 mol of CO and 0.30 mol of  $H_2O$  was placed in a 1 dm³ flask and allowed to come to equilibrium at 1200 K.

Calculate the amount, in moles, of each substance present in the equilibrium mixture at 1200 K.

[4]

[Total: 10]

For

Examiner's Use

3

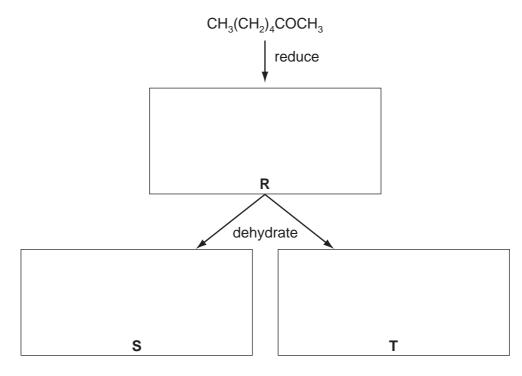
| This | s que                                             | estion refers to the elements in the section of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne Pei | riodic <sup>-</sup> | Table  | showr  | n belo | W.        |   |
|------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|--------|--------|--------|-----------|---|
| H He |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                     |        |        |        |           |   |
| Li   | Ве                                                | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В      | С                   | N      | 0      | F      | Ne        |   |
| Na   | Μţ                                                | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Αl     | Si                  | Р      | S      | Cl     | Ar        |   |
| K    | Ca                                                | a transition elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ga     | Ge                  | As     | Se     | Br     | Kr        |   |
| (a)  | described. Give the <b>symbol</b> of the element. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                     |        |        |        |           |   |
|      | (i)<br>(ii)                                       | An element that has molecules which consist of the |        |                     |        | oms.   |        |           |   |
|      | . ,                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Ĭ                   |        |        |        |           |   |
|      | (iii)                                             | The element that is a liquid at room temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ire an | d pres              | sure.  |        |        |           |   |
|      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                     |        |        |        |           |   |
|      | (iv)                                              | The element in Period 3 (Na to Ar) that has the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e larg | est ato             | omic r | adius. |        |           |   |
|      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                     |        |        |        |           |   |
|      | (v)                                               | The element in Period 3 (Na to Ar) that has the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e high | nest m              | elting | point. |        |           |   |
|      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                     |        |        |        |           |   |
|      | (vi)                                              | The element in Period 3 (Na to Ar) that forms to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the la | rgest a             | anion. |        |        |           |   |
|      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                     |        |        |        |           |   |
| (1   | vii)                                              | An element that reacts with water to give a sol agent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ution  | that c              | an be  | have a | as an  | oxidisinç | 3 |
|      |                                                   | [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                     |        |        |        |           |   |

**(b)** The formulae and melting points of some of the oxides of the elements in Period 3, Na to C*l*, are given in the table.

For Examiner's Use

| formula of oxide | Na <sub>2</sub> O | MgO  | $Al_2O_3$ | SiO <sub>2</sub> | P <sub>4</sub> O <sub>6</sub> | SO <sub>2</sub> | Cl <sub>2</sub> O <sub>7</sub> |
|------------------|-------------------|------|-----------|------------------|-------------------------------|-----------------|--------------------------------|
| m.p./°C          | 1132              | 2830 | 2054      | 1710             | 24                            | -73             | -92                            |

| Give the fo           | rmulae of <b>tw</b>                                                                       | o of thes                                                                                                                                                                    | e oxides                                                                                                                                                                                                                                                | that have                                                                                                                                                                                                                                                                                              | e simple                                                                                                                                                                                                                                                                                                                                               | molecular s                                                                                                                                                                                                                                                                                                                                                                                                                        | tructu                                                                                                                                                                                                                                                                                                                                                                                                                                                                | res.                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | and                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                                                                           |                                                                                                                                                                              | e oxides                                                                                                                                                                                                                                                | that will                                                                                                                                                                                                                                                                                              | give no r                                                                                                                                                                                                                                                                                                                                              | eaction with                                                                                                                                                                                                                                                                                                                                                                                                                       | wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er w                                                                                                                                                                                                                                                                                                                                                                        | hen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       |                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Give the fo           | rmula of the                                                                              | product f                                                                                                                                                                    | ormed w                                                                                                                                                                                                                                                 | hen MgC                                                                                                                                                                                                                                                                                                | ) is react                                                                                                                                                                                                                                                                                                                                             | ed with SO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                                                                           | ···                                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             | [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| e melting poi         | nts of the ele                                                                            | ements S                                                                                                                                                                     | i to C <i>l</i> are                                                                                                                                                                                                                                     | e given ir                                                                                                                                                                                                                                                                                             | n the tabl                                                                                                                                                                                                                                                                                                                                             | e.                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | element                                                                                   | Si                                                                                                                                                                           | Р                                                                                                                                                                                                                                                       | S                                                                                                                                                                                                                                                                                                      | Cl                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | m.p./°C                                                                                   | 1414                                                                                                                                                                         | 44                                                                                                                                                                                                                                                      | 115                                                                                                                                                                                                                                                                                                    | -102                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Explain why elements. | y the melting                                                                             | point of \$                                                                                                                                                                  | Si is very                                                                                                                                                                                                                                              | much gre                                                                                                                                                                                                                                                                                               | eater tha                                                                                                                                                                                                                                                                                                                                              | n those of th                                                                                                                                                                                                                                                                                                                                                                                                                      | e oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er th                                                                                                                                                                                                                                                                                                                                                                       | ree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •••••                 |                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                                                                           | elting po                                                                                                                                                                    | ints of                                                                                                                                                                                                                                                 | the oth                                                                                                                                                                                                                                                                                                | er three                                                                                                                                                                                                                                                                                                                                               | elements                                                                                                                                                                                                                                                                                                                                                                                                                           | are                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in                                                                                                                                                                                                                                                                                                                                                                          | the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       |                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ••••                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ••••                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             | [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | Give the for placed in it.  Give the form.  Explain where elements.  Suggest vorder S > F | Give the formula of one placed in it for a long ting.  Give the formula of the element m.p./°C  Explain why the melting elements.  Suggest why the meaning order S > P > Cl. | Give the formula of one of these placed in it for a long time.  Give the formula of the product formula of the product formula of the elements Sim.p./°C 1414  Explain why the melting point of Selements.  Suggest why the melting poorder S > P > Cl. | Give the formula of one of these oxides placed in it for a long time.  Give the formula of the product formed w  melting points of the elements Si to Clare  element Si P  m.p./°C 1414 44  Explain why the melting point of Si is very elements.  Suggest why the melting points of order S > P > Cl. | Give the formula of one of these oxides that will placed in it for a long time.  Give the formula of the product formed when MgC melting points of the elements Si to Cl are given in element Si P S m.p./°C 1414 44 115  Explain why the melting point of Si is very much greelements.  Suggest why the melting points of the other order S > P > Cl. | Give the formula of one of these oxides that will give no replaced in it for a long time.  Give the formula of the product formed when MgO is reacted as melting points of the elements Si to Cl are given in the table to be a melting point of the elements Si to Cl are given in the table to be a melting point of Si is very much greater that elements.  Suggest why the melting points of the other three order S > P > Cl. | Give the formula of one of these oxides that will give no reaction with placed in it for a long time.  Give the formula of the product formed when MgO is reacted with $SO_2$ melting points of the elements Si to $Cl$ are given in the table.  Element Si P S $Cl$ m.p./°C 1414 44 115 $-102$ Explain why the melting point of Si is very much greater than those of the elements.  Suggest why the melting points of the other three elements order $S > P > Cl$ . | Give the formula of one of these oxides that will give no reaction with water placed in it for a long time.  Give the formula of the product formed when MgO is reacted with SO <sub>2</sub> .  Explain why the melting point of Si is very much greater than those of the oth elements.  Suggest why the melting points of the other three elements are order $S > P > CL$ | Give the formula of one of these oxides that will give no reaction with water will placed in it for a long time.  Give the formula of the product formed when MgO is reacted with SO <sub>2</sub> .  melting points of the elements Si to C <i>l</i> are given in the table.  element Si P S C <i>l</i> m.p./°C 1414 44 115 -102  Explain why the melting point of Si is very much greater than those of the other the elements.  Suggest why the melting points of the other three elements are in |


[Total: 15]

4 Compound **Q**, heptan-2-one, is found in some blue cheeses.

For Examiner's Use

### compound Q

- (a) Compound Q may be reduced to R. Compound R may be dehydrated to give two different products, S and T.
  - (i) In the boxes below, draw the structural formulae of R, S, and T.



| (ii) | State the reagents that would be used for <b>each</b> of these reactions in a school or college laboratory. |
|------|-------------------------------------------------------------------------------------------------------------|
|      | reduction                                                                                                   |

dehydration ......dehydration .....

[5]

[Total: 10]

| (b) | Q is reacted separately wit                                                                                                                                                       | ne <b>structural formula</b> of the organic compound formed the heach reagent under suitable conditions. curs, write 'NO REACTION' in the box. | d when  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
|     | Tollens' reagent                                                                                                                                                                  |                                                                                                                                                |         |  |  |  |  |
|     | HCN                                                                                                                                                                               |                                                                                                                                                |         |  |  |  |  |
|     | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> /H <sup>+</sup>                                                                                                                     |                                                                                                                                                |         |  |  |  |  |
|     |                                                                                                                                                                                   |                                                                                                                                                | [3]     |  |  |  |  |
| (c) | The first stage of cheese m milk.                                                                                                                                                 | aking is to produce 2-hydroxypropanoic acid (lactic acid                                                                                       | d) from |  |  |  |  |
|     |                                                                                                                                                                                   | CH <sub>3</sub> CH(OH)CO <sub>2</sub> H                                                                                                        |         |  |  |  |  |
|     |                                                                                                                                                                                   | lactic acid                                                                                                                                    |         |  |  |  |  |
|     | Other than the use of a pH indicator, what reagent could you use to confirm the presence of some lactic acid in a sample of heptan-2-one?  State what observation you would make. |                                                                                                                                                |         |  |  |  |  |
|     | reagent                                                                                                                                                                           |                                                                                                                                                |         |  |  |  |  |

observation ......[2]

© UCLES 2013 9701/23/M/J/13 **[Turn over** 

| 5 | Compounds containing the allyl group, $CH_2$ = $CHCH_2$ -, have pungent smells and are onions and garlic. Allyl alcohol, $CH_2$ = $CHCH_2OH$ , is a colourless liquid which is soluble in water. |                                                                                                                                |        |  |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
|   | <b>(a)</b> Al                                                                                                                                                                                    | lyl alcohol behaves as a primary alcohol and as an alkene.                                                                     |        |  |  |  |  |
|   |                                                                                                                                                                                                  | ve the structural formula of the organic compound formed when allyl alcohol is reparately with each of the following reagents. | eacted |  |  |  |  |
|   | (i)                                                                                                                                                                                              | acidified potassium dichromate(VI), heating under reflux                                                                       |        |  |  |  |  |
|   | (ii)                                                                                                                                                                                             | bromine in an inert organic solvent                                                                                            |        |  |  |  |  |
|   | ()                                                                                                                                                                                               |                                                                                                                                |        |  |  |  |  |
|   | (iii)                                                                                                                                                                                            | cold, dilute, acidified potassium manganate(VII)                                                                               |        |  |  |  |  |
|   | (iv)                                                                                                                                                                                             | hot, concentrated, acidified potassium manganate(VII)                                                                          |        |  |  |  |  |
|   |                                                                                                                                                                                                  |                                                                                                                                | [5]    |  |  |  |  |
|   | <b>(b)</b> Al                                                                                                                                                                                    | lyl alcohol undergoes the following reactions.                                                                                 |        |  |  |  |  |
|   | (i)                                                                                                                                                                                              | When reacted with concentrated HCl at 100 °C, CH <sub>2</sub> =CHCH <sub>2</sub> Cl is formed.                                 |        |  |  |  |  |
|   | State as fully as you can what type of reaction this is.                                                                                                                                         |                                                                                                                                |        |  |  |  |  |
|   | (ii)                                                                                                                                                                                             | When reacted with MnO <sub>2</sub> at room temperature, CH <sub>2</sub> =CHCHO is formed.                                      |        |  |  |  |  |
|   |                                                                                                                                                                                                  | What type of reaction is this?                                                                                                 |        |  |  |  |  |
|   |                                                                                                                                                                                                  |                                                                                                                                | [2]    |  |  |  |  |

| (c) | ) Allyl alcohol can be converted into propanal in two steps.                                  |                                                                                                    |  |
|-----|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
|     |                                                                                               | $CH_2 \!\!=\!\! CHCH_2OH \xrightarrow{step  II} CH_3CH_2CH_2OH \xrightarrow{step  II} CH_3CH_2CHO$ |  |
|     | (i)                                                                                           | What reagents and conditions would be used for <b>each</b> step?                                   |  |
|     |                                                                                               | step I                                                                                             |  |
|     |                                                                                               | reagent(s)                                                                                         |  |
|     |                                                                                               | condition(s)                                                                                       |  |
|     |                                                                                               | atau II                                                                                            |  |
|     |                                                                                               | step II                                                                                            |  |
|     |                                                                                               | reagent(s)                                                                                         |  |
|     |                                                                                               | condition(s)                                                                                       |  |
|     | (ii)                                                                                          | Allyl alcohol and propanal are isomers.                                                            |  |
|     |                                                                                               | What form of isomerism do they display?                                                            |  |
|     |                                                                                               |                                                                                                    |  |
|     |                                                                                               | [5]                                                                                                |  |
| (d) | Allyl alcohol may also be converted into propanal by using a ruthenium(IV) catalyst in water. |                                                                                                    |  |
|     |                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                               |  |
|     | Suggest what is unusual about this single step reaction.                                      |                                                                                                    |  |
|     |                                                                                               |                                                                                                    |  |
|     |                                                                                               | [1]                                                                                                |  |
|     |                                                                                               | [Total: 13]                                                                                        |  |
|     |                                                                                               |                                                                                                    |  |

12

#### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.