

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		9701/22
Paper 2 Struct	ured Questions AS Core	May/June 2010
		1 hour 15 minutes
Candidates ans	swer on the Question Paper.	
Additional Mate	erials: Data Booklet	

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs, or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE ON ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together.

For Examiner's Use				
1				
2				
3				
4				
5				
Total				

This document consists of **12** printed pages.

For Examiner's Use

Answer **all** the questions in the spaces provided.

1 In the 19th and 20th centuries, experimental results showed scientists that atoms consist of a positive, heavy nucleus which is surrounded by electrons.

Then in the 20th century, theoretical scientists explained how electrons are arranged in orbitals around atoms.

- (a) The diagram below represents the energy levels of the orbitals present in atoms of the second period (Li to Ne).
 - (i) Label the energy levels to indicate the principal quantum number **and** the type of orbital at each energy level.

(ii) On the axes below, draw a sketch diagram of **one** of each **different type (shape)** of orbital that is occupied by the electrons in a second-period element.

Label each type.

(iii) Complete the electronic configurations of nitrogen atoms and oxygen atoms on the energy level diagrams below. Use arrows to represent electrons.

Copper, proton number 29, and argon, proton number 18, are elements which have different physical and chemical properties.
 In the solid state, each element has the same face-centred cubic crystal structure which is shown below.

For Examiner's Use

The particles present in such a crystal may be atoms, molecules, anions or cations. In the diagram above, the particles present are represented by .

(a) Which types of particle are present in the copper and argon crystals? In each case, give their formula.

element	particle	formula
copper		
argon		

[2]

At room temperature, copper is a solid while argon is a gas.

(b) Explain these observations in terms of the forces present in **each** solid structure.

[4]

Ithough copper is a relatively unreactive element, when it is heated to a high temperature in n excess of chlorine, copper(II) chloride is formed. (then a mixture of argon and chlorine is heated to a high temperature, no reaction occurs. (i) How does chlorine behave in its reaction with copper? (ii) Suggest a reason for the lack of a reaction between argon and chlorine. (iii) Suggest a reason for the lack of a reaction between argon and chlorine. (iii) Suggest of the noble gases neon to xenon are given below. [2] The melting points of the noble gases neon to xenon are given below. (ii) Explain why there is an increase in melting point from neon to xenon. (iii) Implicit an increase in melting point from neon to xenon. [2] [2]	\lth								
In the main intervention of the noble gases neon to xenon are given below. Image: Im	ne	ougł exce:	h copper is a ss of chlorin	a relatively unreactive, copper(II) chlorid	ve elen de is fo	nent, wl rmed.	hen it is	s heate	d to a high temperature in
 (i) How does chlorine behave in its reaction with copper? (ii) Suggest a reason for the lack of a reaction between argon and chlorine. [2] the melting points of the noble gases neon to xenon are given below. (2] the melting point of the noble gases neon to xenon are given below. (a) Explain why there is an increase in melting point from neon to xenon. (a) Explain why there is an increase in melting point from neon to xenon. (b) Explain why there is an increase in melting point from neon to xenon. (c) [2] [Total: 10] 	۷h	en a	mixture of a	rgon and chlorine i	s heate	ed to a	high te	mperat	ure, no reaction occurs.
 (ii) Suggest a reason for the lack of a reaction between argon and chlorine. [2] (iii) he melting points of the noble gases neon to xenon are given below. (iii) <u>Ne Ar Kr Xe</u> melting point/K 25 84 116 161 (i) Explain why there is an increase in melting point from neon to xenon. [2] (ii) [2] (iii) [2] (iiii) [2] (iii) [2] (iiii) [2] (iii) [2	c)	(i)	How does	chlorine behave in	its read	ction wi	th copp	er?	
 (ii) Suggest a reason for the lack of a reaction between argon and chlorine. [2] he melting points of the noble gases neon to xenon are given below. 									
[2] he melting points of the noble gases neon to xenon are given below. image: melting point/K 25 84 116 161 ii) Explain why there is an increase in melting point from neon to xenon. [2] [2] [2] [2] [2] [2] [2] [2] [2] [1] [2] [2] [1] [2] [2] [1] [2] [1] [1] [2] [1] [1] [2] [1] [1] [1] [1] [1] [2] [1] [1] [2] [1] [1]		(ii)	Suggest a	reason for the lack	of a re	action I	betwee	n argo	n and chlorine.
[2] he melting points of the noble gases neon to xenon are given below. image: melting point/K 25 84 116 161 ii) Explain why there is an increase in melting point from neon to xenon. [2] iii) [2] [2] [2] [1] [1] [2] [1] [2] [1] [2] [1] [2] [1] [2] [1] [1] [1] [2] [1] [1] [1] [2] [1] [1] [1] [2] [1]									
[2] he melting points of the noble gases neon to xenon are given below. <u>Melting point/K 25 84 116 161</u> I) Explain why there is an increase in melting point from neon to xenon. [2] [2] [7] [7] [7] [7] [7] [7] [7] [7									
he melting points of the noble gases neon to xenon are given below. Ne Ar Kr Xe melting point/K 25 84 116 161 I) Explain why there is an increase in melting point from neon to xenon. [2] [2] [Total: 10]									[2]
Ne Ar Kr Xe melting point/K 25 84 116 161) Explain why there is an increase in melting point from neon to xenon.	١e	mel	lting points o	of the noble gases r	neon to	xenon	are giv	en bel	DW.
melting point/K 25 84 116 161 I) Explain why there is an increase in melting point from neon to xenon.					Ne	Ar	Kr	Xe	
 I) Explain why there is an increase in melting point from neon to xenon. 				melting point/K	25	84	116	161	
[2] [Total: 10]	I)	Exp	plain why the	ere is an increase ir	n meltin	ng point	t from n	ieon to	xenon.
[Total: 10]	I)	Exp	blain why the	ere is an increase ir	n meltin	ng point	t from n	ieon to	xenon.
	I)	Exp	blain why the	ere is an increase ir	n meltin	ng point	t from n	ieon to	xenon. [2]
	1)	Exp	blain why the	ere is an increase ir	n meltin	ng point	t from n	ieon to	 xenon. [2] [Total: 10]
	1)	Exp	blain why the	ere is an increase ir	n meltin	ng point	t from n	ieon to	 xenon. [2] [Total: 10]
	j)	Exp	blain why the	ere is an increase ir	n meltin	ng point	t from n	ieon to	 xenon. [2] [Total: 10]
	d)	Exp	blain why the	ere is an increase ir	n meltin	ng point	t from n	ieon to	 xenon. [2] [Total: 10]
	d)	Exp	blain why the	ere is an increase ir	n meltin	ng point	t from n	ieon to] xenon. [2] [Total: 10]
	d)	Exp	blain why the	ere is an increase ir	n meltin	ng point	t from n	ieon to] xenon. [2] [Total: 10]

The table below gives data for some of the oxides of Period 3 elements. 3

	s below gi						1	1
oxi	de	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₆	SO ₂	
elting p	point/°C	1275	2827	2017	1607	24	-75	
bond	ding							
struc	cture							
Com	nplete the	table by fill	ing in					1
(i)	the 'bond	ling' row by	using only :	the words 'ic	nic' or 'cova	alenť,		
(ii)	the 'struc	ture' row by	using only	the words 's	imple' or 'g	iant'.		
. ,			•					[2]
Fron inso	n the tabl luble in w	e of oxides ater.	above, sug	gest the for	mula of on	e oxide that	t is comple	tely
								[1]
Sep	arate sam	ples of Na ₂	O and SO ₂	were added	to water.			
(i)	For each numerica	oxide, write Il value for t	e a balance he pH of the	d equation for e resulting so	or its reaction	on with wate	r and sugge	st a
	Na ₂ O							
	equation							
	рН							
	SO2							
	equation							
	рН							
(ii)	Construc in water r	t a balance eacts with a	d equation f a solution of	or the reactions of the reactions of the reaction of the react	on that occu er.	urs when a s	olution of N	a ₂ C
								[5]

For Examiner's Use

(d) Separate samples of the oxides MgO and SiO_2 are melted. Each molten sample is then tested to see whether or not it conducts electricity.

Suggest what would be the results in **each** case. Explain your answers.

MgO	 	 	
SiO ₂	 	 	
		[4]	

[Total: 12]

				0		
4	An C, 4	organic compour 18.7%; H, 8.1%; (nd, E , has the following D, 43.2%.	composition by mass:		For Examiner's
	(a)	Calculate the er	mpirical formula of E .			036
					[2]	
	(b)	When vaporised 127 °C and 1.00	d in a suitable apparatu) × 10 ⁵ Nm ⁻² .	s, 0.130g of E occupied	a volume of 58.0 cm ³ at	
		(i) Use the ex	pression $pV = \frac{mRT}{M_r}$ to	calculate <i>M</i> _r of E ,		
		where <i>m</i> is	the mass of E .			
		(ii) Honco calc	sulate the molecular for	mula of F		
					[4]	
	(c)	Compound F , is	s an ester with the mole	cular formula C ₄ H ₈ O ₂ .		
		F is one of four	isomers, S , T , U , and V	, that are all esters.		
		In the boxes be	low, the structural formu	ıla of S is given.		
		Draw the struct	ural formulae of the othe	er three isomers of F the	at are esters.	
	HC	CO ₂ CH(CH ₃) ₂				
		S	Т	U	V	

[3]

(d)	Wh	en the ester F is hydrolysed, an alcohol G is produced.	For
	(i)	What reagent can be used to hydrolyse an ester to an alcohol?	Use
	(ii)	What other type of organic compound is produced at the same time?	
		[2]	
(e)	On Toll	mild oxidation, the alcohol G gives a compound H which forms a silver mirror with ens' reagent.	
	(i)	What functional group does the reaction with Tollens' reagent show to be present in compound \mathbf{H} ? Give the name of this group.	
	(ii)	What type of alcohol is G ?	
	(iii)	What could be the structural formula of the alcohol G?	
		[3]	
(f)	(i)	Which of the four isomers, S , T , U , or V , could not be F ?	
	(ii)	Explain your answer.	
		[2]	
		[Total: 16]	

5 Alkenes such as propene can be readily prepared from alcohols in a school or college laboratory by using the apparatus below.

(iii) What type of reaction occurs in this case?

.....

[3]

 (b) (i) During the reaction, the material X becomes black in colour. Suggest the identity of the black substance and suggest how it is produced during the reaction.

(ii)	At the end of the experiment, when no more propene is being produced, the delivery tube is removed from the water before the apparatus is allowed to cool.	For Examiner's Use
	Suggest why this done.	
(iii)	The material labelled X can be broken crockery broken brick or pumice	
()	Give the chemical formula of a compound that is present in one of these materials	
(iv)	State another reagent that could be used to produce propene from an alcohol	
(1•)	otate another reagent that could be used to produce propene from an alcohol.	
	[5]	
Give with	e the structural formula of the organic product formed when propene reacts separately each of the following substances.	
(i)	bromine	
(::)	cold dilute mangemete (VIII) icon	
(11)		
/iii)	hot concentrated manganate(VIII) ions	
(111)	not, concentrated mangahate(vii) ions	
	[5]	
	[0]	
	(ii) (iii) (iv) Give with (i) (ii)	 (ii) At the end of the experiment, when no more propene is being produced, the delivery tube is removed from the water before the apparatus is allowed to cool. Suggest why this done.

(d)	Pro	Propene may be polymerised.					
	(i) What is the essential condition for such a polymerisation?						
	(ii)	(ii) The disposal of waste poly(propene) is very difficult.Give one important reason for this.					
		[2]					
		[Total: 13]					

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of he University of Cambridge.