

## **Cambridge International Examinations**

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/22

Paper 2 AS Level Structured Questions

October/November 2016

MARK SCHEME

Maximum Mark: 60

## **Published**

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.



| Page 2 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9701     | 22    |

| Question  | Answer                                                                    | Mark |
|-----------|---------------------------------------------------------------------------|------|
| 1(a)      | $0.04  \text{OR}  4 \times 10^{-2}$                                       | 1    |
| 1(b)(i)   | $Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$                         | 1    |
| 1(b)(ii)  | $0.00075\text{OR}7.5\times10^{-4}$                                        | 1    |
| 1(b)(iii) | $0.0015$ <b>OR</b> $1.5\times10^{-3}$                                     | 1    |
| 1(b)(iv)  | $0.015\text{OR}1.5\times10^{-2}$                                          | 1    |
| 1(b)(v)   | $0.025\text{OR}2.5\times10^{-2}$                                          | 1    |
| 1(b)(vi)  | $0.0125\text{OR}1.25\times10^{-2}\text{OR}0.013\text{OR}1.3\times10^{-2}$ | 1    |
| 1(b)(vii) | 40                                                                        | 1    |
|           | Ca/calcium                                                                | 1    |
|           | Total:                                                                    | 9    |

| Page 3 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9701     | 22    |

| Question  | Answer                                                                                                                                               | Mark |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2(a)      | Arrow vertically <b>up</b> from N <sub>2</sub> O <sub>4</sub> line to 2NO <sub>2</sub> line labelled enthalpy change/ΔH                              | 1    |
|           | Arrow vertically $\mathbf{up}$ from $N_2O_4$ line to dashed line from peak labelled activation energy/ $E_a$                                         | 1    |
| 2(b)(i)   | $M_{\rm r} = \frac{m \times R \times T}{p \times V}  \left( = \frac{4.606 \times 8.31 \times 323}{1.68 \times 10^5 \times 1 \times 10^{-3}} \right)$ | 1    |
|           | = 73.6                                                                                                                                               | 1    |
| 2(b)(ii)  | 2n                                                                                                                                                   | 1    |
| 2(b)(iii) | 0.05 – n + 2n <b>OR</b> 0.05 + n                                                                                                                     | 1    |
| 2(b)(iv)  | $\frac{2n}{(0.05+n)}$                                                                                                                                | 1    |
| 2(b)(v)   | $N_2O_4 = 0.0375$<br>$NO_2 = 0.0250$                                                                                                                 | 1 1  |
| 2(b)(vi)  | $K_{p} = \frac{pNO_{2}^{2}}{pN_{2}O_{4}}$                                                                                                            | 1    |

| Page 4 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9701     | 22    |

| Question  | Answer                                                                                                        | Mark |
|-----------|---------------------------------------------------------------------------------------------------------------|------|
| 2(b)(vii) | $(0.4 \times 1.68 \times 10^5)^2/(0.6 \times 1.68 \times 10^5)$ <b>OR</b> $0.4^2 \times 1.68 \times 10^5/0.6$ | 1    |
|           | 44800 <b>OR</b> 44.8                                                                                          | 1    |
|           | Pa <b>OR</b> kPa                                                                                              | 1    |
|           | Total:                                                                                                        | 13   |

| Question  | Answer                                                                                                                                                                                                 | Mark |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3(a)(i)   | Increasing nuclear attraction                                                                                                                                                                          | 1    |
|           | Increasing nuclear charge/number of protons AND constant/similar shielding/same shell                                                                                                                  | 1    |
| 3(a)(ii)  | From 12/Mg to 13/A <i>l</i> :  (Outer) electron in '13'/A <i>l</i> in (3)p (whereas outer electron in '12'/Mg in (3)s)  (3p =) higher energy level/more shielded  From 15/P to 16/S electron repulsion | 1 1  |
|           | ('16'/S has a) pair of electrons in a (3)p orbital/a (3)p orbital is full ORA                                                                                                                          | 1    |
| 3(a)(iii) | (decreasing IE down Group 0) due to decreasing nuclear attraction                                                                                                                                      | 1    |
|           | increasing shielding/increasing number of shells/energy levels/increasing distance of (outer) electrons (from nucleus)                                                                                 | 1    |

| Page 5 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9701     | 22    |

| Question  | Answer                                                                                                                                                                                                                                                                                                                           | Mark |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3(b)(i)   | Increasing strength of/more energy needed to break (metallic) bonding/increasing strength of attraction between (cat)ion/nucleus and delocalised/free/sea of/cloud of electrons                                                                                                                                                  | 1    |
|           | Increasing number of delocalised electrons/decreasing (cat)ion size/increasing charge/charge density of (cat)ion                                                                                                                                                                                                                 | 1    |
| 3(b)(ii)  | Attraction for electrons too strong to fully delocalise all 3 in A $l$ <b>OR</b> difference in size between 12/Mg <sup>2+</sup> and 13/A $l$ <sup>3+</sup> is less than difference in size between 11/Na <sup>+</sup> and 12/Mg <sup>2+</sup> <b>OR</b> magnitude of increase in charge is less from 2+ to 3+ than from 1+ to 2+ | 1    |
| 3(b)(iii) | Increase (15/P to 16/S) then decrease (to 17/C $l$ and 18/Ar) OR general decrease (from 15/P to 18/Ar) with an increase from 15/P to 16/S OR $S_{(8)}>P_{(4)}>Cl_{(2)}>Ar$                                                                                                                                                       | 1    |
|           | (melting point depends on strength of) VdW/IMFs                                                                                                                                                                                                                                                                                  | 1    |
|           | The greater the number of electrons in the molecule (atom for Ar) the greater the strength of VdW/IMFs <b>OR</b> the greater the melting point ora                                                                                                                                                                               | 1    |
| 3(b)(iv)  | Giant covalent (structure)/many (strong) covalent bonds (need breaking)                                                                                                                                                                                                                                                          | 1    |
|           | Total:                                                                                                                                                                                                                                                                                                                           | 15   |

| Page 6 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9701     | 22    |

| Question  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mark        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 4(a)(i)   | 2-bromobutane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1           |
| 4(a)(ii)  | e.g. of mirror images  CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> H <sub>3</sub> CCH <sub>2</sub> Br  CH <sub>2</sub> CH <sub>3</sub> e.g. of swapped groups  CH <sub>3</sub> | 1+1         |
| 4(a)(iii) | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Br<br>(CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> Br<br>(CH <sub>3</sub> ) <sub>3</sub> CBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>1<br>1 |
| 4(b)(i)   | 3-bromo-3-ethylpentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           |
| 4(b)(ii)  | $H_3CCH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1 |
| 4(b)(iii) | S <sub>N</sub> 1/nucleophilic substitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           |

| Page 7 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9701     | 22    |

| Question  | Answer                     | Mark |
|-----------|----------------------------|------|
| 4(c)(i)   | Sodium/potassium hydroxide | 1    |
|           | Ethanol/alcohol AND heat   | 1    |
| 4(c)(ii)  | elimination                | 1    |
| 4(c)(iii) |                            | 1    |
|           |                            | 1    |
|           |                            | 1    |
|           | Total:                     | 17   |

| Page 8 | Mark Scheme                                                | Syllabus | Paper |
|--------|------------------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – October/November 2016 | 9701     | 22    |

| Question  | Answer                                  | Mark |
|-----------|-----------------------------------------|------|
| 5(a)(i)   | Cl● and ●CH <sub>3</sub>                | 1    |
| 5(a)(ii)  | Cl and CH <sub>3</sub> /CH <sub>3</sub> | 1    |
| 5(b)(i)   | Oxidation OR reduction                  | 1    |
| 5(b)(ii)  | Condensation                            | 1    |
| 5(b)(iii) | Reduction OR oxidation OR addition      | 1    |
| 5(b)(iv)  | Addition                                | 1    |
|           | Total:                                  | 6    |