MARK SCHEME for the October/November 2014 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9701	23

Question	Mark Scheme	Marks	Total
1 (a) (i)	increasing distance of (outer/highest energy) electron(s) from nucleus OR increasing distance of outer/valence shell from nucleus	1	
	increased shielding / screening (from inner shells)	1	
	reduces attraction	1	[3]
(ii)	increasing cation charge / effective nuclear charge OR decreasing number of electrons compared with protons	1	
	increase in attraction	1	[2]
(b)	(boiling point) increases (down the group)		
	increasing number of electrons (in molecules) down group		
	increasing strength of / more van der Waals' forces (allow correct alternatives to van der Waals' forces)	1	
	so more energy needed to overcome (the forces)	1	[4]
(c) (i)	F I <u>42.8</u> <u>57.2</u> 19 127	1	
	2.253 0.450 0.450 0.450		
	5 1 / IF ₅	1	
	$EF = MF \text{ or } IF_5 = 222$	1	[3]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9701	23

(ii)		1	
	(Yes) as electronegativities are different	1	[2]
(d) (i)	W = NaClO; $X = \text{NaC}lO_3;$ Y = HCl; Z = AgCl	1 1 1	[4]
(ii)	$3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$ M1: correct species M2: balanced equation	1	[2]
(iii)	0 to -1 (0 to) +5	1 1	[2]
(iv)	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$		[1]
			[23]

Page 4Mark SchemeSyllabusPaperCambridge International AS/A Level – October/November 2014970123

Qu	estion	Mark Scheme	Marks	Total
2	(a)	$CH_4 + H_2O \rightarrow CO + 3H_2$	1	[1]
	(b)	Label on graph indicating catalysed and uncatalysed Ea OR statement Ea catalysed is lower (than Ea uncatalysed) owtte	1	
		Reference to catalyst creating alternative mechanism / reaction pathway / route	1	
		Idea that more molecules have sufficient energy (to react)	1	
		so greater chance / frequency of <u>successful</u> collisions	1	[4]
	(c)		1	
		angle = 107° shape = (trigonal) pyramid(al)	1 1	[3]
	(d) (i)	Advantage = higher rate Greater Kinetic Energy / speed / collision frequency / proportion of successful collisions	1 1	
		Disadvantage – reduced yield / less product / more reactants	1	
		(Forward reaction) exothermic AND (hence in accordance with Le Chatelier's Principle) equilibrium / reaction shifts left (to counteract increasing temp) ora	1	[4]
	(ii)	$K_{\rm p} = \frac{\rm pNH_3^2}{\rm pN_2 \times \rm pH_2^3}$	1	[1]

		Page 5	Mark Scheme	Syllabus	Paper		
			Cambridge International AS/A Level – October/November 2014	9701	23		
(iii)	2	3H₂(g) ≓ 3	0				
	(–0.8) <u>1.2</u>	(–1.6×3/2 <u>0.6</u>) 1.60			1	
	$xNH_3 = 1.6$ $xN_2 = 1.2$ $xH_2 = 0.6$	/3.4 (= 0.35	3)			1	
	$K_{\rm p} = \frac{1}{0.353}$	$0.471^2 \times 2 \times 10^7 \times $	$\frac{(2 \times 10^7)^2}{0.176^3 \times (2 \times 10^7)^3} = 2.88 \times 10^{-13} \text{ Pa}^{-2}$			1+1	[5]
							[18]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9701	23

Question	Mark Scheme	Marks	Total
3 (a)	$\begin{array}{l} \textbf{P}: CH_{3}CH_{2}CH_{2}CH=CH_{2} \\ \textbf{Q}: CH_{3}CH_{2}CH=CHCH_{3} \\ \textbf{R}: CH_{3}CH_{2}C(CH_{3})=CH_{2} \\ \textbf{S}: CH_{3}CH=C(CH_{3})_{2} \\ \textbf{T}: CH_{3}CH_{2}COCH_{3} \end{array}$	1 1 1 1	[5]
(b) (i)	(Different molecules with the) same (molecular and) structural formula	1	
	different arrangements of <u>atoms</u> (in space)	1	[2]
(ii)	$ \begin{array}{c} H & H & H \\ H - C - C - C & H & H \\ H - C - C - C & H & H \\ H & H & C - C - H & H \\ H & H & C - C - H \\ H & H & H \\ trans-pent-2-ene & cis-pent-2-ene \end{array} $	1	[2]
(c)	butan-2-ol	1	[1]
			[10]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9701	23

Qu	estion	Mark Scheme	Marks	Total
4	(a)	reagent = $\underline{conc} H_2 SO_4$ or $\underline{conc} H_3 PO_4$	1	
		conditions = heat	1	
		OR pass vapour over hot Al ₂ O ₃ "reagent" "conditions"		[2]
	(b) (i)	$C_{3}H_{7}OH + 2[O] \rightarrow C_{2}H_{5}CO_{2}H + H_{2}O$		[1]
	(ii)	reagent = sodium / potassium dichromate or correct formula	1	
		conditions = H^+ / acidified and (heat under) reflux	1	[2]
	(c)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1 1	[2]
	(d)	reagent = KOH / NaOH	1	
		conditions = ethanol / alcohol AND Heat / reflux	1	[2]
				[9]