MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

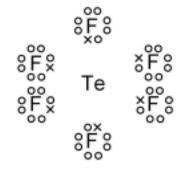
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	22


1 (a)

	[
number of bond pairs	number of lone pairs	shape of molecule	formula of a molecule with this shape
3	0	trigonal planar	BH_3
4	0	tetrahedral	CH₄ allow other Group IV hydrides
3	1	pyramidal or trigonal pyramidal	NH₃ allow other Group V hydrides
2	2	non-linear or bent or V-shaped	H₂O allow other Group VI hydrides

1 mark for each correct row

(3 × 1) [3]

(b) (i)

(ii)	octahedral or square-based bipyramid	(1)	
(iii)	90°	(1)	[3]

[Total: 6]

(1)

	Page 3					Paper	
				CE AS/A LEVEL – October/November 2013	Syllabus 9701	22	
2	(a)	117	7° to 120°			(1)	[1]
	(b)		electrophili	c addition		(1)	
		(ii)	H	н L	H		
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C1 - - - - - - - -	
				each correct structure ctly drawn optical isomers of the first structure		(3 × 1)	[4]
						[Tota	l: 5]
3	(a)	(i)	anode	$Cl^{-}(aq) \rightarrow \frac{1}{2} Cl_2(g) + e^{-}$		(1)	
•	()	(-)	cathode	$H^{+}(aq) + e^{-} \rightarrow \frac{1}{2}H_2(g)$ or		(-)	
				$2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$		(1)	
		(ii)	because ir	on in steel will react with chlorine		(1)	[3]
	(b)	bur forr allo	ns a white s	nly – colour of chlorine disappears		(1) (1)	
		bur		nite or yellow flame or ne disappears – if not given for Na – or			
		for	PC <i>1</i> ₅	forms a white or pale yellow solid			
		for	PC <i>l</i> ₃	forms a colourless liquid		(1)	
		Ρ-	+ 2½Cl₂ →	$\bullet PCl_5 \qquad \text{or } P_4 + 10Cl_2 \to 4PCl_5$			
		or					
		Ρ-	+ 1½Cl₂ →	PCl_3 or P_4 + $6Cl_2 \rightarrow 4PCl_3$			
		equ	ation must	refer to compound described		(1)	[4]

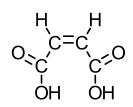
Pag	ge 4	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2013	9701	22	
	NaOC <i>l</i> +1	ite aqueous NaOH		(1) (1)	
	hot conc NaC <i>l</i> O₃ +5	centrated aqueous NaOH		(1) (1)	[4]
(d)	MgCl ₂ 6	6.5 to 6.9		(1)	
	SiCl ₄	0 to 3		(1)	
	-	ssolves without reaction or ight or partial hydrolysis occurs		(1)	
	•	eacts with water or ydrolysis occurs		(1)	
,	SiC <i>l</i> ₄ + 4	$\begin{array}{rcl} H_2O &\rightarrow & SiO_2 \ + \ 4HCl \ \ \text{or} \\ H_2O &\rightarrow & Si(OH)_4 \ + \ 4HCl \ \ \text{or} \\ H_2O &\rightarrow & SiO_2.2H_2O \ + \ 4HCl \end{array}$		(1)	[5]
				[Total:	נסו

4 (a) (i)
$$H_2X + 2NaOH \rightarrow Na_2X + 2H_2O$$
 (1)

(ii)
$$n(OH^{-}) = \frac{21.6 \times 0.100}{1000} = 2.16 \times 10^{-3} \text{ mol}$$
 (1)

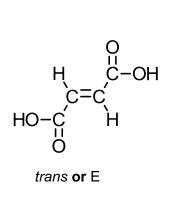
(iii)
$$n(\mathbf{R}) = n(H_2 X) = \frac{2.16 \times 10^{-3}}{2}$$

= 1.08 × 10⁻³ mol in 25.0 cm³ (1)


(iv)
$$n(\mathbf{R}) = 1.08 \times 10^{-3} \times \frac{250}{25.0} = 0.0108 \text{ mol in } 250 \text{ cm}^3$$
 (1)

(v) 0.0108 mol of **R** = 1.25 g of **R**
1 mol of **R** =
$$\frac{1.25 \times 1}{0.0108}$$
 = 115.7 = 116 g (1) [5]

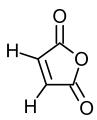
DMAT	
1 1711	


Page 5	Mark Scheme	Syllabus	Paper	,
	GCE AS/A LEVEL – October/November 2013	9701	22	
	f S = 116 f T = 134 f U = 150 all three needed		(1)	
(ii) S			(1)	[2
or H₃PO	SO₄ followed by H₂O ₄ followed by H₂O or			
steam ar	nd H ₃ PO ₄ catalyst		(1 + 1)	
S into U KMnO₄ cold dilut	e acidified or cold dilute alkaline		(1) (1)	
	conc. H_2SO_4 or conc. H_3PO_4 or Al_2O_3 t in each case		(1)	[5
(d) T reactin	g with an excess of Na			
NaO ₂ CC	H(ONa)CH ₂ CO ₂ Na		(1)	
U reactin	g with an excess of Na ₂ CO ₃			
	H(OH)CH(OH)CO₂Na		(1)	[2

(e)

cis **or** Z

two correct structures correct labels



(1) (1)	[2]
(')	[-]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	22

(f) correct ring of C and O atoms, i.e.

correct compound, i.e.

(hydrogen atoms do not need to be shown)

[Total: 18]

(1)

[2]

5	(a) (i)	alkanes or paraffins not hydrocarbons	(1)	
	(ii)	$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$	(1)	[2]
	(b) (i)	carbon allow graphite	(1)	
	(ii)	$2C_4H_{10}$ + $5O_2$ \rightarrow $8C$ + $10H_2O$ allow balanced equations which include CO and/or CO_2	(1)	[2]
	• •	halpy change when 1 mol of a substance	(1)	
		ournt in an excess of oxygen/air under standard conditions is completely combusted under standard conditions	(1)	[2]
	(d) (i)	$m = \frac{pVM_r}{RT} = \frac{1.01 \times 10^5 \times 125 \times 10^{-6} \times 44}{8.31 \times 293} \text{ g}$	(1)	
		= 0.228147345 g = 0.23 g	(1)	
	(ii)	heat released = m c δ T = 200 × 4.18 × 13.8 J = 11536.8 J = 11.5 kJ	(1) (1)	
	(iii)	0.23 g of propane produce 11.5 kJ 11 5 × 44		
		44 g of propane produce $\frac{11.5 \times 44}{0.23}$ kJ		
		= 2200 kJ mol ⁻¹	(1)	[5]

PMT

Page 7	,	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2013	9701	22
(e) (i)	from	methane to butane		
		e are more electrons in the molecule		(1)
	there	efore greater/stronger van der Waals' forces		(1)
(ii)	strai	ght chain molecules can pack more closely		(1)
	there	efore stronger van der Waals' forces		(1)
	or re	everse argument		
				[Total: 1