CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

1 In this question, numerical answers should be given to three significant figures.

(a) (i)
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
 (1)

(ii)
$$M_r C_6 H_{12} O_6 = 180$$
 (1) $180 \text{ g } C_6 H_{12} O_6 \rightarrow 6 \text{ mol } CO_2$

1200 g
$$C_6H_{12}O_6 \to \underline{6 \times 200} \, mol \, CO_2$$

180

 $= 40.0 \,\mathrm{mol}$ to $3 \,\mathrm{sf}$

allow ecf on wrong equation and/or wrong M_r (1)

(iii) 6.82×10^9 people will produce $6.82 \times 10^9 \times 40.0$ mol CO₂

$$= 2.728 \times 10^{11} \,\text{mol CO}_2 \tag{1}$$

 $2.728 \times 10^{11} \text{ mol CO}_2 \equiv 2.728 \times 10^{11} \times 44 = 1.20032 \times 10^{13} \text{ g}$

=
$$1.20 \times 10^7$$
 tonnes CO₂ to 3 sf (1) [5]

allow ecf on answer from (ii)

(b) (i)
$$2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$$
 or

$$C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$$
 (1)

(ii)
$$M_r C_8 H_{18} = (8 \times 12) + (18 \times 1) = 114$$
 (1)

mass of 4.00 dm³ of octane =
$$4000 \times 0.70 = 2800 g$$
 (1)

 $n(C_8H_{18}) = \frac{2800}{114} = 24.56140351 \,\text{mol in } 4.00 \,\text{dm}^3$

$$= 24.6 \, \text{mol to } 3 \, \text{sf}$$
 (1)

(iii) 2 mol C₈H₁₈ produce 16 × 44 g CO₂

24.6 mol C_8H_{18} produce $\underline{16 \times 44 \times 24.6}\,g$ CO2 $\underline{2}$

 $= 8659.2 g CO_2$

$$= 8660 \,\mathrm{g} \,\mathrm{CO}_2 \,\mathrm{to} \,3 \,\mathrm{sf}$$
 (1) [5]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

(c) 6.82×10^9 people produce 1.20×10^7 tonnes CO_2 per day

 $8660\,g\,CO_2$ produced when car travels $100\,km$

when travelling 1 km, car produces
$$\underline{8660} = 8.66 \times 10^{-1} \text{ g}$$

 $\underline{100}$
= 8.66 × 10⁻⁵ tonnes (1)

to produce 1.20 × 10⁷ tonnes CO₂ car must travel

$$\frac{1.20 \times 10^7}{8.66 \times 10^{-5}}$$

=
$$1.385681293 \times 10^{11} = 1.39 \times 10^{11} \text{ km to } 3 \text{ sf}$$
 (1) [2]

(d) possible pollutants and the damage they cause

СО	NO NO	x NO2	SO ₂	H ₂ O	С	unburned C ₈ H ₁₈
toxic	toxic	toxic	toxic			
	global warming	respiratory problems	respiratory problems	global warming	respiratory problems	respiratory problems
	photochemical smog	acid rain	acid rain			

compound (1) damage (1) [2]

[Total: 14]

[Total: 14]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

2

(a)	(i)	white fumes/steamy fumes		(1)	
	(ii)	$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$ or $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$		(1)	
	(iii)	an acid that is completely ionised in solution and acid that is completely dissociated in		(1)	[3]
(b)	(i)	purple/violet vapour (I_2) or black/brown irritating/acrid gas (SO_2) or stinking gas yellow solid (S)		(1)	
	(ii)		or HI is a reducing agent or which reduces H₂SO₄	(1) (1)	[3]
(c)	(i)	white ppt formed – not creamy white or which dissolves in NH ₃ (aq)	off white	(1) (1)	
	(ii)	NaC $l(aq)$ + AgNO ₃ (aq) \rightarrow AgC $l(s)$ + NaC $l^-(aq)$ + Ag $^+(aq)$ \rightarrow AgC $l(s)$	aNO₃(aq) or		
		equation all state symbols correct		(1) (1)	
		AgC $l(s)$ + 2NH ₃ (aq) \rightarrow [Ag(NH ₃) ₂] ⁺ C l^- (AgC $l(s)$ + 2NH ₃ (aq) \rightarrow [Ag(NH ₃) ₂] C $l(ac)$	` ''		
		equation all state symbols correct		(1) (1)	
	(iii)	precipitate is yellow precipitate does not dissolve		(1) (1)	[8]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

- 3 (a) manufacture of ammonia/Haber process or hydrogenation of fats/oils or making margarine or hydrocracking
- (1) [1]

(b) (i) increasing the pressure

equilibrium will move to LHS (1)

fewer moles/molecules on LHS or more moles/molecules on RHS

(1)

(ii) decreasing the temperature

equilibrium will move to LHS forward reaction is endothermic

(1)

forward reaction is endothermic (1) [4]

- (c) rate will increase (1)
- collisions will occur more frequently (1) [2]
- (d) (i) $\underline{K}_{c} = [CO_{2}][H_{2}]$ [CO][H₂0] (1)

(ii)
$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$
 initial moles 0.40 0.40 0.20 0.20 equil moles (0.40 - y) (0.40 - y) (0.20 + y) (0.20 + y) equil concn./mol $(0.40 - y)$ $(0.40 - y)$ $(0.20 + y)$

$$K_c = \frac{(0.20 + y)^2}{(0.40 - y)^2} = 6.40 \times 10^{-1}$$
 (1)

$$(0.20 + y) = \sqrt{6.40 \times 10^{-1}} = 0.8$$

(0.40 - y)

$$(0.20 + y) = 0.8 \times (0.40 - y)$$

$$0.20 + y = 0.32 - 0.8y$$

1.8 y = 0.12

gives
$$y = 0.067$$
 (1)

at equilibrium

$$n(CO) = n(H_2O) = (0.40 - 0.067) = 0.33 \text{ mol }$$
and $n(CO_2) = n(H_2) = (0.20 + 0.067) = 0.27 \text{ mol}$ (1)

allow ecf as appropriate [5]

[Total: 12]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

4 (a) (i)

reaction	organic compound	reagent	structural formulae of organic product
Α	CH₃CH(OH)CH₃	NaBH₄	no reaction
В	CH₃COCH₃	Tollens' reagent warm	no reaction
С	CH ₃ CO ₂ CH(CH ₃) ₂	KOH(aq) warm	CH ₃ CO ₂ K or CH ₃ CO ₂ ⁻ + (CH ₃) ₂ CHOH
D	(CH₃)₃COH	Cr ₂ O ₇ ^{2−} /H ⁺ heat under reflux	no reaction
E	CH₃COCH₃	NaBH₄	CH₃CH(OH)CH₃
F	(CH₃)₃COH	PC <i>l</i> ₅	(CH ₃) ₃ CC <i>l</i>
G	CH₃CH=CHCH₂OH	MnO₄⁻/H⁺ heat under reflux	CH ₃ CO ₂ H + HO ₂ CCO ₂ H

each correct answer gets 1

(9 × 1)

(ii)

colour at the end of the reaction	colour at the beginning of the reaction	reaction
colourless	purple	G
not clear	parpio	J

(1 + 1 + 1) [12]

[Total: 12]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

5 (a) (i)

H J K

CH₂=CHCH₂CH₂OH CH₃CH₂COCH₃ CH₃CH₂CH₂CHO

CH₃CH=CHCH₂OH

CH₂=CHCH(OH)CH₃

each correct answer gets 1 (5 x 1)

(ii)

(1)

(iii)

correct structure drawn fully displayed (1)

chiral centre clearly shown by* (1)

[8]

[Total: 8]