MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

F	Page 2		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2012	9701	21	
1 (a		nCC Iot Z	D ₃ Zn(OH) ₂ ZnO In or other compounds of Zn		(any 2)	[2]
(k) (i	•	o ensure all of the water of crystallisation had been driven off o be at constant mass	or	(1)	
	(i	ii) n	mass of ZnSO ₄ = 76.34 – 74.25 = 2.09 g		(1)	
		٨	<i>M</i> _r ZnSO ₄ = 65.4 + 32.1 + (4 × 16.0) = 161.5			
		а	allow use of Zn = 65 and/or S = 32 to give values between 16	1 and 161.5	(1)	
		r	$n(ZnSO_4) = \frac{2.09}{161.5} = 0.01294 = 1.29 \times 10^{-2}$			
		Z	$2nSO_4 = 161$ gives 1.30×10^{-2}		(1)	
	(i	iii) n	mass of H_2O driven off = 77.97 – 76.34 = 1.63 g		(1)	
		r	$h(H_2O) = \frac{1.63}{18} = 0.0905 = 9.1 \times 10^{-2}$		(1)	
	(i	i v) 1	1.29×10^{-2} mol ZnSO ₄ are combined with 9.1 × 10^{-2} mol H ₂ O			
		1	1 mol ZnSO ₄ is combined with $\frac{9.1 \times 10^{-2}}{1.29 \times 10^{-2}}$			
		=	$= 7.054 \equiv 7 \mod H_2O$			
			answer must be expressed as a whole number allow ecf on candidate's answers to (b)(ii) and (b)(iii)		(1)	[7]
(0	:) (i	i) <i>r</i> .	$n(Zn) = n (CH_3CO_2)_2Zn.2H_2O$		(1)	
		n	$n(Zn) = \frac{0.015}{65.4} = 2.290 \times 10^{-4}$			
		=	= 2.29 × 10 ⁻⁴		(1)	
			mass of crystals = 2.29 × 10 ⁻⁴ × 219.4 = 0.0502655 g = 0.05 g = 50 mg		(1)	
	(i	ii) c	concentration of $(CH_3CO_2)_2Zn.2H_2O = \frac{2.29 \times 10^{-4}}{2.205} = 0.0458$			
		=	= $4.58 \times 10^{-2} \text{ mol dm}^{-3}$		(1)	
		а	allow correct answers if Zn = 65 is used			[4]
					[Total	: 13]

F	Page 3				Mark Scheme		Syllabus	Paper	•
				GCE AS/A LEV	EL – October/Novemb	per 2012	9701	21	
2 (a		(i) (ii)	from	mal stability decreas n C <i>l</i> to I, atomic size	increases or			(1)	
					er from the nucleus of X	(or			
			sma	X bond becomes lor Iler orbital overlap o ce H—X bond streng		oup VII		(1) (1)	[3
(k	5)	<i>K</i> _c =	= <u>[</u>	$\frac{\mathrm{HI}^{2}}{\mathrm{ \times[I_{2}]}}$					(1)
			[H ₂]×[l ₂]					
		no ı	units	 must be clearly sta 	ated			(1)	[2]
(c	c)	(i)		hange as no units or				(1)	
			-		moles each side of equ	uilibrium		(1)	
		(ii)	equi	librium moves to RH	IS			(1)	
			forw	acreases with decreat ard reaction is exoth arse reaction is endo				(1)	[4
(c		equ	al mo iil. mo iil. coi		$\begin{array}{c} H_2(g) & + \\ 0.02 \\ (0.02 - y) \\ \underline{(0.02 - y)} \\ 1 \end{array}$	$I_2(g)$ 0.02 (0.02 - y) (0.02 - y) 1		(1)	
		K _c =	$=\frac{H}{[H_2]}$	$\frac{\mathrm{HI}^{2}}{]\times[\mathrm{I}_{2}]} = \frac{(2\mathrm{y})^{2}}{(0.02-\mathrm{y})^{2}}$	- = 59			(1)	
		(0.0	<u>2y</u>)2 – y	= √59 = 77 ′)					
		2y =	= (7.7	′ × 0.02) – 7.7y					
		9.7y	y = 0.	154					
		give	es y =	$=\frac{0.154}{9.7}=0.0159=0$.016			(1)	
		at e	quili	brium					
		•	,	2 × 0.016 = 0.032 an n(I ₂) = (0.02 – 0.016)				(1)	

allow ecf where possible

[4]

Page 4		ge 4			Syllabus	Paper	,
					9701	21	
	(a)	(i)	N ₂ (g) + 3H ₂ (g) = 2NH ₃ (g) or N ₂ (g) + 3H ₂ (g) → 2NH ₃ (g)				
			state symbols	required		(1)	
		(ii)	pressure	between 60 and 250 atm or between 60 × 10 ⁵ Pa and 250 × 10 ⁵ Pa		(1)	
			temperature	between 300 and 550 °C		(1)	
			catalyst	iron / iron oxide		(1)	
		(iii)	(iii) manufacture of HNO ₃ / as a cleaning agent / refrigerant / fertiliser / fertilisers / explosives / to remove SO ₂ from combustion products of hydro				
	(b)	(i)	NH₄C <i>l</i> and C both formula			(1)	
		(ii)	$2NH_4Cl + Cal NH_4^+ + OH^$	$(OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O \text{ or}$ $\rightarrow NH_3 + H_2O$			
			correct produ correctly bala	cts nced equation		(1) (1)	
		(iii)	CaO			(1)	
				id / it is basic / it does not react with NH_3 or $_4O_{10}$ and H_2SO_4 are acidic / react with NH_3		(1)	[{
	((c)	H H-N: H	$+ H^{+} \longrightarrow \begin{bmatrix} H \\ H \\ H \\ H \end{bmatrix}^{+}$			

correct displayed eqn.,	
with positive charge clearly shown	(1)
lone pair on NH ₃	(1)
co-ordinate / dative bond clearly shown	(1) [3]

PMT

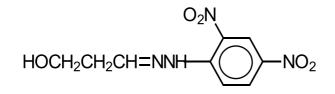
Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	21

4 (a) (i)

reaction	organic	reagent	structural formulae of organic
reaction	compound	loagon	products
А	(CH ₃) ₃ COH	Cr ₂ O ₇ ^{2–} /H ⁺ heat under reflux	no reaction
В	CH ₃ CH ₂ CHO	Fehling's reagent warm	CH₃CH₂CO₂H or CH₃CH₂CO₂ [−]
с	HCO ₂ CH(CH ₃) ₂	NaOH(aq) warm	HCO₂Na or HCO₂ [−] (CH₃)₂CHOH
D	CH ₂ =CHCHO	NaBH ₄	CH ₂ =CHCH ₂ OH
E	(CH₃)₃COH	NaBH ₄	no reaction
F	CH ₃ CH ₂ COCH ₃	MnO₄ [−] /H ⁺ heat under reflux	no reaction

each correct answer gets (1)

(7 × 1)


(1 +1 + 1) [10]

(ii)

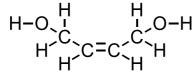
reaction	colour at the beginning of the reaction	colour at the end of the reaction
В	blue	brick red

each correct answer gets 1

(b) (i)

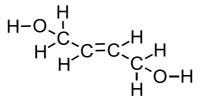
(1)

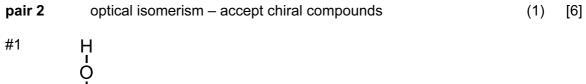
(1)

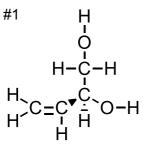

(ii) red or orange

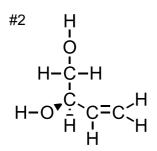
[Total: 12]

[2]


	carb			Mark Scheme	Syllabus	Paper	•
				GCE AS/A LEVEL – October/November 2012	9701	21	
(carb	oxylic acid or alcohol present or oxylic acid and alcohol present acid or carboxyl or hydroxyl		(1)	
		(ii)		oxylic acid not present or alcohol present		(1)	
		(iii)	alke	ne or >C=C< present		(1)	[
_	(L)						


(b) (i)




each correct structure gets (1) (4×1)

(ii) pair 1	geometrical or <i>cis-trans</i> or <i>E</i> / <i>Z</i> isomerism	(1)

[Total: 9]